-
IO Tools (Text, CSV, HDF5, …)¶
-
CSV & Text files¶
- Parsing options¶
- Specifying column data types¶
- Specifying Categorical dtype¶
- Naming and Using Columns¶
- Duplicate names parsing¶
- Comments and Empty Lines¶
- Dealing with Unicode Data¶
- Index columns and trailing delimiters¶
- Date Handling¶
- Specifying method for floating-point conversion¶
- Thousand Separators¶
- NA Values¶
- Infinity¶
- Returning Series¶
- Boolean values¶
- Handling “bad” lines¶
- Dialect¶
- Quoting and Escape Characters¶
- Files with Fixed Width Columns¶
- Indexes¶
- Automatically “sniffing” the delimiter¶
- Reading multiple files to create a single DataFrame¶
- Iterating through files chunk by chunk¶
- Specifying the parser engine¶
- Reading remote files¶
- Writing out Data¶
- JSON¶
- HTML¶
-
Excel files¶
-
Reading Excel Files¶
-
ExcelFile
class¶ -
Specifying Sheets¶
-
- Writing Excel Files¶
-
Excel writer engines¶
- Clipboard¶
- Pickling¶
- msgpack¶
- HDF5 (PyTables)¶
- Feather¶
- Parquet¶
- SQL Queries¶
- Google BigQuery¶
- Stata Format¶
- SAS Formats¶
- Other file formats¶
- Performance Considerations¶
-
-
-
Reading Excel Files¶
-
CSV & Text files¶
IO Tools (Text, CSV, HDF5, …)¶
The pandas I/O API is a set of top level reader
functions accessed
like
that generally return a pandas object. The corresponding writer
functions are object methods that are accessed like
DataFrame.to_csv()
.
Below is a table containing available readers
and writers
.
Format Type | Data Description | Reader | Writer |
---|---|---|---|
text | CSV | read_csv | to_csv |
text | JSON | read_json | to_json |
text | HTML | read_html | to_html |
text | Local clipboard | read_clipboard | to_clipboard |
binary | MS Excel | read_excel | to_excel |
binary | HDF5 Format | read_hdf | to_hdf |
binary | Feather Format | read_feather | to_feather |
binary | Parquet Format | read_parquet | to_parquet |
binary | Msgpack | read_msgpack | to_msgpack |
binary | Stata | read_stata | to_stata |
binary | SAS | read_sas | |
binary | Python Pickle Format | read_pickle | to_pickle |
SQL | SQL | read_sql | to_sql |
SQL | Google Big Query | read_gbq | to_gbq |
is an informal performance comparison for some of these IO methods.
Note
For examples that use the StringIO
class, make sure you import it
according to your Python version, i.e. from StringIO import StringIO
for Python 2 and from io import StringIO
for Python 3.
CSV & Text files¶
The two workhorse functions for reading text files (a.k.a. flat files)
are
and
read_table()
.
They both use the same parsing code to intelligently convert tabular
data into a DataFrame
object. See the
for some advanced strategies.
Parsing options¶
The functions
and
accept the following common arguments:
Basic¶
filepath_or_buffer : various
Either a path to a file (a
str
,
pathlib.Path
,
or py._path.local.LocalPath
), URL (including http, ftp, and S3
locations), or any object with a read()
method (such as an open file
or
StringIO
).
sep : str, defaults to ','
for read_csv()
, \t
for read_table()
Delimiter to use. If sep is None
, the C engine cannot automatically
detect the separator, but the Python parsing engine can, meaning the
latter will be used and automatically detect the separator by Python’s
builtin sniffer tool,
csv.Sniffer
.
In addition, separators longer than 1 character and different from
'\s+'
will be interpreted as regular expressions and will also force
the use of the Python parsing engine. Note that regex delimiters are
prone to ignoring quoted data. Regex example: '\\r\\t'
.
delimiter : str, default None
Alternative argument name for sep.
delim_whitespace : boolean, default False
Specifies whether or not whitespace (e.g. ' '
or '\t'
) will be used
as the delimiter. Equivalent to setting sep='\s+'
. If this option is
set to True
, nothing should be passed in for the delimiter
parameter.
New in version 0.18.1: support for
the Python parser.
Column and Index Locations and Names¶
header : int or list of ints, default 'infer'
Row number(s) to use as the column names, and the start of the data.
Default behavior is to infer the column names: if no names are passed
the behavior is identical to header=0
and column names are inferred
from the first line of the file, if column names are passed explicitly
then the behavior is identical to header=None
. Explicitly pass
header=0
to be able to replace existing names.
The header can be a list of ints that specify row locations for a
multi-index on the columns e.g. [0,1,3]
. Intervening rows that are not
specified will be skipped (e.g. 2 in this example is skipped). Note that
this parameter ignores commented lines and empty lines if
skip_blank_lines=True
, so header=0 denotes the first line of data
rather than the first line of the file.
names : array-like, default None
List of column names to use. If file contains no header row, then you
should explicitly pass header=None
. Duplicates in this list will cause
a UserWarning
to be issued.
index_col : int or sequence or False
, default None
Column to use as the row labels of the DataFrame
. If a sequence is
given, a MultiIndex is used. If you have a malformed file with
delimiters at the end of each line, you might consider index_col=False
to force pandas to not use the first column as the index (row names).
usecols : list-like or callable, default None
Return a subset of the columns. If list-like, all elements must either
be positional (i.e. integer indices into the document columns) or
strings that correspond to column names provided either by the user in
names or inferred from the document header row(s). For example, a valid
list-like usecols parameter would be [0, 1, 2]
or
['foo', 'bar', 'baz']
.
Element order is ignored, so usecols=[0, 1]
is the same as [1, 0]
.
To instantiate a DataFrame from data
with element order preserved use
pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]
for columns
in ['foo', 'bar']
order or
pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]
for
['bar', 'foo']
order.
If callable, the callable function will be evaluated against the column
names, returning names where the callable function evaluates to True:
In[1]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'
In[2]: pd.read_csv(StringIO(data))
Out[2]:
col1 col2 col3
0 a b 1
1 a b 2
2 c d 3
In[3]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ['COL1', 'COL3'])
Out[3]:
col1 col3
0 a 1
1 a 2
2 c 3
Using this parameter results in much faster parsing time and lower
memory usage.
squeeze : boolean, default False
If the parsed data only contains one column then return a Series
.
prefix : str, default None
Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, …
mangle_dupe_cols : boolean, default True
Duplicate columns will be specified as ‘X’, ‘X.1’…’X.N’, rather than
‘X’…’X’. Passing in False
will cause data to be overwritten if there
are duplicate names in the columns.
General Parsing Configuration¶
dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
(unsupported with engine='python'
). Use str or object together with
suitable na_values
settings to preserve and not interpret dtype.
New in version 0.20.0: support for
the Python parser.
engine : {'c'
, 'python'
}
Parser engine to use. The C engine is faster while the Python engine is
currently more feature-complete.
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels.
true_values : list, default None
Values to consider as True
.
false_values : list, default None
Values to consider as False
.
skipinitialspace : boolean, default False
Skip spaces after delimiter.
skiprows : list-like or integer, default None
Line numbers to skip (0-indexed) or number of lines to skip (int) at the
start of the file.
If callable, the callable function will be evaluated against the row
indices, returning True if the row should be skipped and False
otherwise:
In[4]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'
In[5]: pd.read_csv(StringIO(data))
Out[5]:
col1 col2 col3
0 a b 1
1 a b 2
2 c d 3
In[6]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0)
Out[6]:
col1 col2 col3
0 a b 2
skipfooter : int, default 0
Number of lines at bottom of file to skip (unsupported with engine=’c’).
nrows : int, default None
Number of rows of file to read. Useful for reading pieces of large
files.
low_memory : boolean, default True
Internally process the file in chunks, resulting in lower memory use
while parsing, but possibly mixed type inference. To ensure no mixed
types either set False
, or specify the type with the dtype
parameter. Note that the entire file is read into a single DataFrame
regardless, use the chunksize
or iterator
parameter to return the
data in chunks. (Only valid with C parser)
memory_map : boolean, default False
If a filepath is provided for filepath_or_buffer
, map the file object
directly onto memory and access the data directly from there. Using this
option can improve performance because there is no longer any I/O
overhead.
NA and Missing Data Handling¶
na_values : scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. See
below for a list of the values interpreted as NaN by default.
keep_default_na : boolean, default True
Whether or not to include the default NaN values when parsing the data.
Depending on whether na_values is passed in, the behavior is as
follows:
-
If keep_default_na is
True
, and na_values are specified,na_values is appended to the default NaN values used for parsing.
-
If keep_default_na is
True
, and na_values are not specified,only the default NaN values are used for parsing.
-
If keep_default_na is
False
, and na_values are specified, onlythe NaN values specified na_values are used for parsing.
-
If keep_default_na is
False
, and na_values are not specified,no strings will be parsed as NaN.
Note that if na_filter is passed in as False
, the keep_default_na
and na_values parameters will be ignored.
na_filter : boolean, default True
Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False
can
improve the performance of reading a large file.
verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns.
skip_blank_lines : boolean, default True
If True
, skip over blank lines rather than interpreting as NaN values.
Datetime Handling¶
parse_dates : boolean or list of ints or names or list of lists or dict, default False
.
- If
True
-> try parsing the index. -
If
[1, 2, 3]
-> try parsing columns 1, 2, 3 each as a separatedate column.
-
If
[[1, 3]]
-> combine columns 1 and 3 and parse as a singledate column.
-
If
{'foo': [1, 3]}
-> parse columns 1, 3 as date and callresult ‘foo’. A fast-path exists for iso8601-formatted dates.
infer_datetime_format : boolean, default False
If True
and parse_dates is enabled for a column, attempt to infer the
datetime format to speed up the processing.
keep_date_col : boolean, default False
If True
and parse_dates specifies combining multiple columns then
keep the original columns.
date_parser : function, default None
Function to use for converting a sequence of string columns to an array
of datetime instances. The default uses dateutil.parser.parser
to do
the conversion. Pandas will try to call date_parser in three different
ways, advancing to the next if an exception occurs: 1) Pass one or more
arrays (as defined by parse_dates) as arguments; 2) concatenate
(row-wise) the string values from the columns defined by parse_dates
into a single array and pass that; and 3) call date_parser once for
each row using one or more strings (corresponding to the columns defined
by parse_dates) as arguments.
dayfirst : boolean, default False
DD/MM format dates, international and European format.
Iteration¶
iterator : boolean, default False
Return TextFileReader object for iteration or getting chunks with
get_chunk()
.
chunksize : int, default None
Return TextFileReader object for iteration. See
below.
Quoting, Compression, and File Format¶
compression : {'infer'
, 'gzip'
, 'bz2'
, 'zip'
, 'xz'
, None
}, default 'infer'
For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip,
bz2, zip, or xz if filepath_or_buffer is a string ending in ‘.gz’,
‘.bz2’, ‘.zip’, or ‘.xz’, respectively, and no decompression otherwise.
If using ‘zip’, the ZIP file must contain only one data file to be read
in. Set to None
for no decompression.
New in version 0.18.1: support for
‘zip’ and ‘xz’ compression.
thousands : str, default None
Thousands separator.
decimal : str, default '.'
Character to recognize as decimal point. E.g. use ','
for European
data.
float_precision : string, default None
Specifies which converter the C engine should use for floating-point
values. The options are None
for the ordinary converter, high
for
the high-precision converter, and round_trip
for the round-trip
converter.
lineterminator : str (length 1), default None
Character to break file into lines. Only valid with C parser.
quotechar : str (length 1)
The character used to denote the start and end of a quoted item. Quoted
items can include the delimiter and it will be ignored.
quoting : int or csv.QUOTE_*
instance, default 0
Control field quoting behavior per csv.QUOTE_*
constants. Use one of
QUOTE_MINIMAL
(0), QUOTE_ALL
(1), QUOTE_NONNUMERIC
(2) or
QUOTE_NONE
(3).
doublequote : boolean, default True
When quotechar
is specified and quoting
is not QUOTE_NONE
,
indicate whether or not to interpret two consecutive quotechar
elements inside a field as a single quotechar
element.
escapechar : str (length 1), default None
One-character string used to escape delimiter when quoting is
QUOTE_NONE
.
comment : str, default None
Indicates remainder of line should not be parsed. If found at the
beginning of a line, the line will be ignored altogether. This parameter
must be a single character. Like empty lines (as long as
skip_blank_lines=True
), fully commented lines are ignored by the
parameter header but not by skiprows. For example, if comment='#'
,
parsing ‘#empty\na,b,c\n1,2,3’ with header=0 will result in ‘a,b,c’
being treated as the header.
encoding : str, default None
Encoding to use for UTF when reading/writing (e.g. 'utf-8'
).
List of Python standard encodings.
dialect : str or csv.Dialect
instance, default None
If provided, this parameter will override values (default or not) for
the following parameters: delimiter, doublequote, escapechar,
skipinitialspace, quotechar, and quoting. If it is necessary to override
values, a ParserWarning will be issued. See
documentation for more details.
tupleize_cols : boolean, default False
This argument will be removed and will always convert to MultiIndex
Leave a list of tuples on columns as is (default is to convert to a
MultiIndex on the columns).
Error Handling¶
error_bad_lines : boolean, default True
Lines with too many fields (e.g. a csv line with too many commas) will
by default cause an exception to be raised, and no DataFrame
will be
returned. If False
, then these “bad lines” will dropped from the
DataFrame
that is returned. See
below.
warn_bad_lines : boolean, default True
If error_bad_lines is False
, and warn_bad_lines is True
, a
warning for each “bad line” will be output.
Specifying column data types¶
You can indicate the data type for the whole DataFrame
or individual
columns:
In[7]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9'
In[8]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9
In[9]: df = pd.read_csv(StringIO(data), dtype=object)
In[10]: df
Out[10]:
a b c
0 1 2 3
1 4 5 6
2 7 8 9
In[11]: df['a'][0]
Out[11]: '1'
In[12]: df = pd.read_csv(StringIO(data), dtype={'b': object, 'c': np.float64})
In[13]: df.dtypes
Out[13]:
a int64
b object
c float64
dtype: object
Fortunately, pandas offers more than one way to ensure that your
column(s) contain only one dtype
. If you’re unfamiliar with these
concepts, you can see
to learn more about dtypes, and
to learn more about object
conversion in pandas.
For instance, you can use the converters
argument of
read_csv()
:
In[14]: data = "col_1\n1\n2\n'A'\n4.22"
In[15]: df = pd.read_csv(StringIO(data), converters={'col_1': str})
In[16]: df
Out[16]:
col_1
0 1
1 2
2 'A'
3 4.22
In[17]: df['col_1'].apply(type).value_counts()
Out[17]:
<class 'str'> 4
Name: col_1, dtype: int64
Or you can use the
function to coerce the dtypes after reading in the data,
In[18]: df2 = pd.read_csv(StringIO(data))
In[19]: df2['col_1'] = pd.to_numeric(df2['col_1'], errors='coerce')
In[20]: df2
Out[20]:
col_1
0 1.00
1 2.00
2 NaN
3 4.22
In[21]: df2['col_1'].apply(type).value_counts()
Out[21]:
<class 'float'> 4
Name: col_1, dtype: int64
which will convert all valid parsing to floats, leaving the invalid
parsing as NaN
.
Ultimately, how you deal with reading in columns containing mixed dtypes
depends on your specific needs. In the case above, if you wanted to
NaN
out the data anomalies, then
is probably your best option. However, if you wanted for all the data to
be coerced, no matter the type, then using the converters
argument of
would certainly be worth trying.
New in version 0.20.0: support
for the Python parser.
Thedtype
option is supported by the ‘python’ engine.
Note
In some cases, reading in abnormal data with columns containing mixed
dtypes will result in an inconsistent dataset. If you rely on pandas to
infer the dtypes of your columns, the parsing engine will go and infer
the dtypes for different chunks of the data, rather than the whole
dataset at once. Consequently, you can end up with column(s) with mixed
dtypes. For example,
In[22]: df = pd.DataFrame({'col_1': list(range(500000)) + ['a', 'b'] + list(range(500000))})
In[23]: df.to_csv('foo.csv')
In[24]: mixed_df = pd.read_csv('foo.csv')
In[25]: mixed_df['col_1'].apply(type).value_counts()
Out[25]:
<class 'int'> 737858
<class 'str'> 262144
Name: col_1, dtype: int64
In[26]: mixed_df['col_1'].dtype
Out[26]: dtype('O')
will result with mixed_df containing an int
dtype for certain chunks
of the column, and str
for others due to the mixed dtypes from the
data that was read in. It is important to note that the overall column
will be marked with a dtype
of object
, which is used for columns
with mixed dtypes.
Specifying Categorical dtype¶
New in version 0.19.0.
Categorical
columns can be parsed directly by specifying
dtype='category'
or dtype=CategoricalDtype(categories, ordered)
.
In[27]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'
In[28]: pd.read_csv(StringIO(data))
Out[28]:
col1 col2 col3
0 a b 1
1 a b 2
2 c d 3
In[29]: pd.read_csv(StringIO(data)).dtypes
Out[29]:
col1 object
col2 object
col3 int64
dtype: object
In[30]: pd.read_csv(StringIO(data), dtype='category').dtypes
Out[30]:
col1 category
col2 category
col3 category
dtype: object
Individual columns can be parsed as a Categorical
using a dict
specification:
In[31]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
Out[31]:
col1 category
col2 object
col3 int64
dtype: object
New in version 0.21.0.
Specifying dtype='cateogry'
will result in an unordered Categorical
whose categories
are the unique values observed in the data. For more
control on the categories and order, create a
ahead of time, and pass that for that column’s dtype
.
In[32]: from pandas.api.types import CategoricalDtype
In[33]: dtype = CategoricalDtype(['d', 'c', 'b', 'a'], ordered=True)
In[34]: pd.read_csv(StringIO(data), dtype={'col1': dtype}).dtypes
Out[34]:
col1 category
col2 object
col3 int64
dtype: object
When using dtype=CategoricalDtype
, “unexpected” values outside of
dtype.categories
are treated as missing values.
In[35]: dtype = CategoricalDtype(['a', 'b', 'd']) # No 'c'
In[36]: pd.read_csv(StringIO(data), dtype={'col1': dtype}).col1
Out[36]:
0 a
1 a
2 NaN
Name: col1, dtype: category
Categories (3, object): [a, b, d]
This matches the behavior of Categorical.set_categories()
.
Note
With dtype='category'
, the resulting categories will always be parsed
as strings (object dtype). If the categories are numeric they can be
converted using the
function, or as appropriate, another converter such as
to_datetime()
.
When dtype
is a CategoricalDtype
with homogenous categories
( all
numeric, all datetimes, etc.), the conversion is done automatically.
In[37]: df = pd.read_csv(StringIO(data), dtype='category')
In[38]: df.dtypes
Out[38]:
col1 category
col2 category
col3 category
dtype: object
In[39]: df['col3']
Out[39]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, object): [1, 2, 3]
In[40]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)
In[41]: df['col3']
Out[41]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, int64): [1, 2, 3]
Naming and Using Columns¶
Handling column names¶
A file may or may not have a header row. pandas assumes the first row
should be used as the column names:
In[42]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9'
In[43]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9
In[44]: pd.read_csv(StringIO(data))
Out[44]:
a b c
0 1 2 3
1 4 5 6
2 7 8 9
By specifying the names
argument in conjunction with header
you can
indicate other names to use and whether or not to throw away the header
row (if any):
In[45]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9
In[46]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=0)
Out[46]:
foo bar baz
0 1 2 3
1 4 5 6
2 7 8 9
In[47]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=None)
Out[47]:
foo bar baz
0 a b c
1 1 2 3
2 4 5 6
3 7 8 9
If the header is in a row other than the first, pass the row number to
header
. This will skip the preceding rows:
In[48]: data = 'skip this skip it\na,b,c\n1,2,3\n4,5,6\n7,8,9'
In[49]: pd.read_csv(StringIO(data), header=1)
Out[49]:
a b c
0 1 2 3
1 4 5 6
2 7 8 9
Note
Default behavior is to infer the column names: if no names are passed
the behavior is identical to header=0
and column names are inferred
from the first nonblank line of the file, if column names are passed
explicitly then the behavior is identical to header=None
.
Duplicate names parsing¶
If the file or header contains duplicate names, pandas will by default
distinguish between them so as to prevent overwriting data:
In[50]: data = 'a,b,a\n0,1,2\n3,4,5'
In[51]: pd.read_csv(StringIO(data))
Out[51]:
a b a.1
0 0 1 2
1 3 4 5
There is no more duplicate data because mangle_dupe_cols=True
by
default, which modifies a series of duplicate columns ‘X’, …, ‘X’ to
become ‘X’, ‘X.1’, …, ‘X.N’. If mangle_dupe_cols=False
, duplicate data
can arise:
In[2]: data = 'a,b,a\n0,1,2\n3,4,5'
In[3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
Out[3]:
a b a
0 2 1 2
1 5 4 5
To prevent users from encountering this problem with duplicate data, a
ValueError
exception is raised if mangle_dupe_cols != True
:
In[2]: data = 'a,b,a\n0,1,2\n3,4,5'
In[3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
...
ValueError: Setting mangle_dupe_cols=False is not supported yet
Filtering columns (usecols
)¶
The usecols
argument allows you to select any subset of the columns in
a file, either using the column names, position numbers or a callable:
New in version 0.20.0: support for
callable usecols arguments
In[52]: data = 'a,b,c,d\n1,2,3,foo\n4,5,6,bar\n7,8,9,baz'
In[53]: pd.read_csv(StringIO(data))
Out[53]:
a b c d
0 1 2 3 foo
1 4 5 6 bar
2 7 8 9 baz
In[54]: pd.read_csv(StringIO(data), usecols=['b', 'd'])
Out[54]:
b d
0 2 foo
1 5 bar
2 8 baz
In[55]: pd.read_csv(StringIO(data), usecols=[0, 2, 3])
Out[55]:
a c d
0 1 3 foo
1 4 6 bar
2 7 9 baz
In[56]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ['A', 'C'])
Out[56]:
a c
0 1 3
1 4 6
2 7 9
The usecols
argument can also be used to specify which columns not to
use in the final result:
In[57]: pd.read_csv(StringIO(data), usecols=lambda x: x not in ['a', 'c'])
Out[57]:
b d
0 2 foo
1 5 bar
2 8 baz
In this case, the callable is specifying that we exclude the “a” and “c”
columns from the output.
Comments and Empty Lines¶
Ignoring line comments and empty lines¶
If the comment
parameter is specified, then completely commented lines
will be ignored. By default, completely blank lines will be ignored as
well.
In[58]: data = '\na,b,c\n \n# commented line\n1,2,3\n\n4,5,6'
In[59]: print(data)
a,b,c
# commented line
1,2,3
4,5,6
In[60]: pd.read_csv(StringIO(data), comment='#')
Out[60]:
a b c
0 1 2 3
1 4 5 6
If skip_blank_lines=False
, then read_csv
will not ignore blank
lines:
In[61]: data = 'a,b,c\n\n1,2,3\n\n\n4,5,6'
In[62]: pd.read_csv(StringIO(data), skip_blank_lines=False)
Out[62]:
a b c
0 NaN NaN NaN
1 1.0 2.0 3.0
2 NaN NaN NaN
3 NaN NaN NaN
4 4.0 5.0 6.0
Warning
The presence of ignored lines might create ambiguities involving line
numbers; the parameter header
uses row numbers (ignoring
commented/empty lines), while skiprows
uses line numbers (including
commented/empty lines):
In[63]: data = '#comment\na,b,c\nA,B,C\n1,2,3'
In[64]: pd.read_csv(StringIO(data), comment='#', header=1)
Out[64]:
A B C
0 1 2 3
In[65]: data = 'A,B,C\n#comment\na,b,c\n1,2,3'
In[66]: pd.read_csv(StringIO(data), comment='#', skiprows=2)
Out[66]:
a b c
0 1 2 3
If both header
and skiprows
are specified, header
will be relative
to the end of skiprows
. For example:
In[67]: data = '# empty\n# second empty line\n# third empty' \
In[67]: 'line\nX,Y,Z\n1,2,3\nA,B,C\n1,2.,4.\n5.,NaN,10.0'
In[68]: print(data)
# empty
# second empty line
# third emptyline
X,Y,Z
1,2,3
A,B,C
1,2.,4.
5.,NaN,10.0
In[69]: pd.read_csv(StringIO(data), comment='#', skiprows=4, header=1)
Out[69]:
A B C
0 1.0 2.0 4.0
1 5.0 NaN 10.0
Comments¶
Sometimes comments or meta data may be included in a file:
In[70]: print(open('tmp.csv').read())
ID,level,category
Patient1,123000,x # really unpleasant
Patient2,23000,y # wouldn't take his medicine
Patient3,1234018,z # awesome
By default, the parser includes the comments in the output:
In[71]: df = pd.read_csv('tmp.csv')
In[72]: df
Out[72]:
ID level category
0 Patient1 123000 x # really unpleasant
1 Patient2 23000 y # wouldn't take his medicine
2 Patient3 1234018 z # awesome
We can suppress the comments using the comment
keyword:
In[73]: df = pd.read_csv('tmp.csv', comment='#')
In[74]: df
Out[74]:
ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z
Dealing with Unicode Data¶
The encoding
argument should be used for encoded unicode data, which
will result in byte strings being decoded to unicode in the result:
In[75]: data = b'word,length\nTr\xc3\xa4umen,7\nGr\xc3\xbc\xc3\x9fe,5'.decode('utf8').encode('latin-1')
In[76]: df = pd.read_csv(BytesIO(data), encoding='latin-1')
In[77]: df
Out[77]:
word length
0 Träumen 7
1 Grüße 5
In[78]: df['word'][1]
Out[78]: 'Grüße'
Some formats which encode all characters as multiple bytes, like UTF-16,
won’t parse correctly at all without specifying the encoding.
Full list of Python standard encodings.
Index columns and trailing delimiters¶
If a file has one more column of data than the number of column names,
the first column will be used as the DataFrame
’s row names:
In[79]: data = 'a,b,c\n4,apple,bat,5.7\n8,orange,cow,10'
In[80]: pd.read_csv(StringIO(data))
Out[80]:
a b c
4 apple bat 5.7
8 orange cow 10.0
In[81]: data = 'index,a,b,c\n4,apple,bat,5.7\n8,orange,cow,10'
In[82]: pd.read_csv(StringIO(data), index_col=0)
Out[82]:
a b c
index
4 apple bat 5.7
8 orange cow 10.0
Ordinarily, you can achieve this behavior using the index_col
option.
There are some exception cases when a file has been prepared with
delimiters at the end of each data line, confusing the parser. To
explicitly disable the index column inference and discard the last
column, pass index_col=False
:
In[83]: data = 'a,b,c\n4,apple,bat,\n8,orange,cow,'
In[84]: print(data)
a,b,c
4,apple,bat,
8,orange,cow,
In[85]: pd.read_csv(StringIO(data))
Out[85]:
a b c
4 apple bat NaN
8 orange cow NaN
In[86]: pd.read_csv(StringIO(data), index_col=False)
Out[86]:
a b c
0 4 apple bat
1 8 orange cow
If a subset of data is being parsed using the usecols
option, the
index_col
specification is based on that subset, not the original
data.
In[87]: data = 'a,b,c\n4,apple,bat,\n8,orange,cow,'
In[88]: print(data)
a,b,c
4,apple,bat,
8,orange,cow,
In[89]: pd.read_csv(StringIO(data), usecols=['b', 'c'])
Out[89]:
b c
4 bat NaN
8 cow NaN
In[90]: pd.read_csv(StringIO(data), usecols=['b', 'c'], index_col=0)
Out[90]:
b c
4 bat NaN
8 cow NaN
Date Handling¶
Specifying Date Columns¶
To better facilitate working with datetime data,
and
use the keyword arguments parse_dates
and date_parser
to allow users
to specify a variety of columns and date/time formats to turn the input
text data into datetime
objects.
The simplest case is to just pass in parse_dates=True
:
# Use a column as an index, and parse it as dates.
In[91]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True)
In[92]: df
Out[92]:
A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5
# These are Python datetime objects
In[93]: df.index
Out[93]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', name='date', freq=None)
It is often the case that we may want to store date and time data
separately, or store various date fields separately. the parse_dates
keyword can be used to specify a combination of columns to parse the
dates and/or times from.
You can specify a list of column lists to parse_dates
, the resulting
date columns will be prepended to the output (so as to not affect the
existing column order) and the new column names will be the
concatenation of the component column names:
In[94]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900
In[95]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]])
In[96]: df
Out[96]:
1_2 1_3 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
By default the parser removes the component date columns, but you can
choose to retain them via the keep_date_col
keyword:
In[97]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]],
....: keep_date_col=True)
....:
In[98]: df
Out[98]:
1_2 1_3 0 1 2 3 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 19990127 19:00:00 18:56:00 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 19990127 20:00:00 19:56:00 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD 19990127 21:00:00 20:56:00 -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD 19990127 21:00:00 21:18:00 -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD 19990127 22:00:00 21:56:00 -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD 19990127 23:00:00 22:56:00 -0.59
Note that if you wish to combine multiple columns into a single date
column, a nested list must be used. In other words, parse_dates=
indicates that the second and third columns should each be parsed as
separate date columns while parse_dates=[[1, 2]]
means the two columns
should be parsed into a single column.
You can also use a dict to specify custom name columns:
In[99]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
In[100]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec)
In[101]: df
Out[101]:
nominal actual 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
It is important to remember that if multiple text columns are to be
parsed into a single date column, then a new column is prepended to the
data. The index_col specification is based off of this new set of
columns rather than the original data columns:
In[102]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
In[103]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
.....: index_col=0) # index is the nominal column
.....:
In[104]: df
Out[104]:
actual 0 4
nominal
1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
Note
If a column or index contains an unparseable date, the entire column or
index will be returned unaltered as an object data type. For
non-standard datetime parsing, use
after pd.read_csv
.
Note
read_csv has a fast_path for parsing datetime strings in iso8601
format, e.g “2000-01-01T00:01:02+00:00” and similar variations. If you
can arrange for your data to store datetimes in this format, load times
will be significantly faster, ~20x has been observed.
Note
When passing a dict as the parse_dates argument, the order of the
columns prepended is not guaranteed, because dict objects do not impose
an ordering on their keys. On Python 2.7+ you may use
collections.OrderedDict instead of a regular dict if this matters to
you. Because of this, when using a dict for ‘parse_dates’ in
conjunction with the index_col argument, it’s best to specify
index_col as a column label rather then as an index on the resulting
frame.
Date Parsing Functions¶
Finally, the parser allows you to specify a custom date_parser
function to take full advantage of the flexibility of the date parsing
API:
In[105]: import pandas.io.date_converters as conv
In[106]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
.....: date_parser=conv.parse_date_time)
.....:
In[107]: df
Out[107]:
nominal actual 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
Pandas will try to call the date_parser
function in three different
ways. If an exception is raised, the next one is tried:
-
date_parser
is first called with one or more arrays as arguments,as defined using parse_dates (e.g.,
date_parser(['2013', '2013'], ['1', '2'])
). -
If #1 fails,
date_parser
is called with all the columnsconcatenated row-wise into a single array (e.g.,
date_parser(['2013 1', '2013 2'])
). -
If #2 fails,
date_parser
is called once for every row with one ormore string arguments from the columns indicated with parse_dates
(e.g.,date_parser('2013', '1')
for the first row,
date_parser('2013', '2')
for the second, etc.).
Note that performance-wise, you should try these methods of parsing
dates in order:
-
Try to infer the format using
infer_datetime_format=True
(seesection below).
-
If you know the format, use
pd.to_datetime()
:date_parser=lambda x: pd.to_datetime(x, format=...)
. -
If you have a really non-standard format, use a custom
date_parser
function. For optimal performance, this should be vectorized, i.e.,
it should accept arrays as arguments.
You can explore the date parsing functionality in
and add your own. We would love to turn this module into a community
supported set of date/time parsers. To get you started,
date_converters.py
contains functions to parse dual date and time
columns, year/month/day columns, and year/month/day/hour/minute/second
columns. It also contains a generic_parser
function so you can curry
it with a function that deals with a single date rather than the entire
array.
Inferring Datetime Format¶
If you have parse_dates
enabled for some or all of your columns, and
your datetime strings are all formatted the same way, you may get a
large speed up by setting infer_datetime_format=True
. If set, pandas
will attempt to guess the format of your datetime strings, and then use
a faster means of parsing the strings. 5-10x parsing speeds have been
observed. pandas will fallback to the usual parsing if either the format
cannot be guessed or the format that was guessed cannot properly parse
the entire column of strings. So in general, infer_datetime_format
should not have any negative consequences if enabled.
Here are some examples of datetime strings that can be guessed (All
representing December 30th, 2011 at 00:00:00):
- “20111230”
- “2011/12/30”
- “20111230 00:00:00”
- “12/30/2011 00:00:00”
- “30/Dec/2011 00:00:00”
- “30/December/2011 00:00:00”
Note that infer_datetime_format
is sensitive to dayfirst
. With
dayfirst=True
, it will guess “01/12/2011” to be December 1st. With
dayfirst=False
(default) it will guess “01/12/2011” to be January
12th.
# Try to infer the format for the index column
In[108]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
.....: infer_datetime_format=True)
.....:
In[109]: df
Out[109]:
A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5
International Date Formats¶
While US date formats tend to be MM/DD/YYYY, many international formats
use DD/MM/YYYY instead. For convenience, a dayfirst
keyword is
provided:
In[110]: print(open('tmp.csv').read())
date,value,cat
1/6/2000,5,a
2/6/2000,10,b
3/6/2000,15,c
In[111]: pd.read_csv('tmp.csv', parse_dates=[0])
Out[111]:
date value cat
0 2000-01-06 5 a
1 2000-02-06 10 b
2 2000-03-06 15 c
In[112]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
Out[112]:
date value cat
0 2000-06-01 5 a
1 2000-06-02 10 b
2 2000-06-03 15 c
Specifying method for floating-point conversion¶
The parameter float_precision
can be specified in order to use a
specific floating-point converter during parsing with the C engine. The
options are the ordinary converter, the high-precision converter, and
the round-trip converter (which is guaranteed to round-trip values after
writing to a file). For example:
In[113]: val = '0.3066101993807095471566981359501369297504425048828125'
In[114]: data = 'a,b,c\n1,2,{0}'.format(val)
In[115]: abs(pd.read_csv(StringIO(data), engine='c', float_precision=None)['c'][0] - float(val))
Out[115]: 1.1102230246251565e-16
In[116]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='high')['c'][0] - float(val))
Out[116]: 5.5511151231257827e-17
In[117]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='round_trip')['c'][0] - float(val))
Out[117]: 0.0
Thousand Separators¶
For large numbers that have been written with a thousands separator, you
can set the thousands
keyword to a string of length 1 so that integers
will be parsed correctly:
By default, numbers with a thousands separator will be parsed as
strings:
In[118]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z
In[119]: df = pd.read_csv('tmp.csv', sep='|')
In[120]: df
Out[120]:
ID level category
0 Patient1 123,000 x
1 Patient2 23,000 y
2 Patient3 1,234,018 z
In[121]: df.level.dtype
Out[121]: dtype('O')
The thousands
keyword allows integers to be parsed correctly:
In[122]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z
In[123]: df = pd.read_csv('tmp.csv', sep='|', thousands=',')
In[124]: df
Out[124]:
ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z
In[125]: df.level.dtype
Out[125]: dtype('int64')
NA Values¶
To control which values are parsed as missing values (which are
signified by NaN
), specify a string in na_values
. If you specify a
list of strings, then all values in it are considered to be missing
values. If you specify a number (a float
, like 5.0
or an integer
like 5
), the corresponding equivalent values will also imply a missing
value (in this case effectively [5.0, 5]
are recognized as NaN
).
To completely override the default values that are recognized as
missing, specify keep_default_na=False
.
The default NaN
recognized values are
['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A', '#N/A', 'N/A', 'n/a', 'NA', '#NA', 'NULL', 'null', 'NaN', '-NaN', 'nan', '-nan', '']
.
Let us consider some examples:
read_csv(path, na_values=[5])
In the example above 5
and 5.0
will be recognized as NaN
, in
addition to the defaults. A string will first be interpreted as a
numerical 5
, then as a NaN
.
read_csv(path, keep_default_na=False, na_values=[""])
Above, only an empty field will be recognized as NaN
.
read_csv(path, keep_default_na=False, na_values=["NA", "0"])
Above, both NA
and 0
as strings are NaN
.
read_csv(path, na_values=["Nope"])
The default values, in addition to the string "Nope"
are recognized as
NaN
.
Infinity¶
inf
like values will be parsed as np.inf
(positive infinity), and
-inf
as -np.inf
(negative infinity). These will ignore the case of
the value, meaning Inf
, will also be parsed as np.inf
.
Returning Series¶
Using the squeeze
keyword, the parser will return output with a single
column as a Series
:
In[126]: print(open('tmp.csv').read())
level
Patient1,123000
Patient2,23000
Patient3,1234018
In[127]: output = pd.read_csv('tmp.csv', squeeze=True)
In[128]: output
Out[128]:
Patient1 123000
Patient2 23000
Patient3 1234018
Name: level, dtype: int64
In[129]: type(output)
Out[129]: pandas.core.series.Series
Boolean values¶
The common values True
, False
, TRUE
, and FALSE
are all
recognized as boolean. Occasionally you might want to recognize other
values as being boolean. To do this, use the true_values
and
false_values
options as follows:
In[130]: data= 'a,b,c\n1,Yes,2\n3,No,4'
In[131]: print(data)
a,b,c
1,Yes,2
3,No,4
In[132]: pd.read_csv(StringIO(data))
Out[132]:
a b c
0 1 Yes 2
1 3 No 4
In[133]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[133]:
a b c
0 1 True 2
1 3 False 4
Handling “bad” lines¶
Some files may have malformed lines with too few fields or too many.
Lines with too few fields will have NA values filled in the trailing
fields. Lines with too many fields will raise an error by default:
In[27]: data = 'a,b,c\n1,2,3\n4,5,6,7\n8,9,10'
In[28]: pd.read_csv(StringIO(data))
---------------------------------------------------------------------------
ParserError Traceback (most recent call last)
ParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4
You can elect to skip bad lines:
In[29]: pd.read_csv(StringIO(data), error_bad_lines=False)
Skipping line 3: expected 3 fields, saw 4
Out[29]:
a b c
0 1 2 3
1 8 9 10
You can also use the usecols
parameter to eliminate extraneous column
data that appear in some lines but not others:
In[30]: pd.read_csv(StringIO(data), usecols=[0, 1, 2])
Out[30]:
a b c
0 1 2 3
1 4 5 6
2 8 9 10
Dialect¶
The dialect
keyword gives greater flexibility in specifying the file
format. By default it uses the Excel dialect but you can specify either
the dialect name or a
instance.
Suppose you had data with unenclosed quotes:
In[134]: print(data)
label1,label2,label3
index1,"a,c,e
index2,b,d,f
By default, read_csv
uses the Excel dialect and treats the double
quote as the quote character, which causes it to fail when it finds a
newline before it finds the closing double quote.
We can get around this using dialect
:
In[135]: dia = csv.excel()
In[136]: dia.quoting = csv.QUOTE_NONE
In[137]: pd.read_csv(StringIO(data), dialect=dia)
Out[137]:
label1 label2 label3
index1 "a c e
index2 b d f
All of the dialect options can be specified separately by keyword
arguments:
In[138]: data = 'a,b,c~1,2,3~4,5,6'
In[139]: pd.read_csv(StringIO(data), lineterminator='~')
Out[139]:
a b c
0 1 2 3
1 4 5 6
Another common dialect option is skipinitialspace
, to skip any
whitespace after a delimiter:
In[140]: data = 'a, b, c\n1, 2, 3\n4, 5, 6'
In[141]: print(data)
a, b, c
1, 2, 3
4, 5, 6
In[142]: pd.read_csv(StringIO(data), skipinitialspace=True)
Out[142]:
a b c
0 1 2 3
1 4 5 6
The parsers make every attempt to “do the right thing” and not be
fragile. Type inference is a pretty big deal. If a column can be coerced
to integer dtype without altering the contents, the parser will do so.
Any non-numeric columns will come through as object dtype as with the
rest of pandas objects.
Quoting and Escape Characters¶
Quotes (and other escape characters) in embedded fields can be handled
in any number of ways. One way is to use backslashes; to properly parse
this data, you should pass the escapechar
option:
In[143]: data = 'a,b\n"hello, \\"Bob\\", nice to see you",5'
In[144]: print(data)
a,b
"hello, \"Bob\", nice to see you",5
In[145]: pd.read_csv(StringIO(data), escapechar='\\')
Out[145]:
a b
0 hello, "Bob", nice to see you 5
Files with Fixed Width Columns¶
While
reads delimited data, the
function works with data files that have known and fixed column widths.
The function parameters to read_fwf
are largely the same as read_csv
with two extra parameters, and a different usage of the delimiter
parameter:
colspecs
: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data. Default behavior, if not specified, is to infer.widths
: A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.delimiter
: Characters to consider as filler characters in the fixed-width file. Can be used to specify the filler character of the fields if it is not spaces (e.g., ‘~’).
Consider a typical fixed-width data file:
In[146]: print(open('bar.csv').read())
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3
In order to parse this file into a DataFrame
, we simply need to supply
the column specifications to the read_fwf function along with the file
name:
# Column specifications are a list of half-intervals
In[147]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)]
In[148]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0)
In[149]: df
Out[149]:
1 2 3
0
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3
Note how the parser automatically picks column names X.<column
number> when header=None
argument is specified. Alternatively, you
can supply just the column widths for contiguous columns:
# Widths are a list of integers
In[150]: widths = [6, 14, 13, 10]
In[151]: df = pd.read_fwf('bar.csv', widths=widths, header=None)
In[152]: df
Out[152]:
0 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3
The parser will take care of extra white spaces around the columns so
it’s ok to have extra separation between the columns in the file.
By default, read_fwf
will try to infer the file’s colspecs
by using
the first 100 rows of the file. It can do it only in cases when the
columns are aligned and correctly separated by the provided delimiter
(default delimiter is whitespace).
In[153]: df = pd.read_fwf('bar.csv', header=None, index_col=0)
In[154]: df
Out[154]:
1 2 3
0
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3
New in version 0.20.0.
read_fwf
supports the dtype
parameter for specifying the types of
parsed columns to be different from the inferred type.
In[155]: pd.read_fwf('bar.csv', header=None, index_col=0).dtypes
Out[155]:
1 float64
2 float64
3 float64
dtype: object
In[156]: pd.read_fwf('bar.csv', header=None, dtype={2: 'object'}).dtypes
Out[156]:
0 object
1 float64
2 object
3 float64
dtype: object
Indexes¶
Files with an “implicit” index column¶
Consider a file with one less entry in the header than the number of
data column:
In[157]: print(open('foo.csv').read())
A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
In this special case, read_csv
assumes that the first column is to be
used as the index of the DataFrame
:
In[158]: pd.read_csv('foo.csv')
Out[158]:
A B C
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5
Note that the dates weren’t automatically parsed. In that case you would
need to do as before:
In[159]: df = pd.read_csv('foo.csv', parse_dates=True)
In[160]: df.index
Out[160]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', freq=None)
Reading an index with a MultiIndex
¶
Suppose you have data indexed by two columns:
In[161]: print(open('data/mindex_ex.csv').read())
year,indiv,zit,xit
1977,"A",1.2,.6
1977,"B",1.5,.5
1977,"C",1.7,.8
1978,"A",.2,.06
1978,"B",.7,.2
1978,"C",.8,.3
1978,"D",.9,.5
1978,"E",1.4,.9
1979,"C",.2,.15
1979,"D",.14,.05
1979,"E",.5,.15
1979,"F",1.2,.5
1979,"G",3.4,1.9
1979,"H",5.4,2.7
1979,"I",6.4,1.2
The index_col
argument to read_csv
and read_table
can take a list
of column numbers to turn multiple columns into a MultiIndex
for the
index of the returned object:
In[162]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0,1])
In[163]: df
Out[163]:
zit xit
year indiv
1977 A 1.20 0.60
B 1.50 0.50
C 1.70 0.80
1978 A 0.20 0.06
B 0.70 0.20
C 0.80 0.30
D 0.90 0.50
E 1.40 0.90
1979 C 0.20 0.15
D 0.14 0.05
E 0.50 0.15
F 1.20 0.50
G 3.40 1.90
H 5.40 2.70
I 6.40 1.20
In[164]: df.loc[1978]
Out[164]:
zit xit
indiv
A 0.2 0.06
B 0.7 0.20
C 0.8 0.30
D 0.9 0.50
E 1.4 0.90
Reading columns with a MultiIndex
¶
By specifying list of row locations for the header
argument, you can
read in a MultiIndex
for the columns. Specifying non-consecutive rows
will skip the intervening rows.
In[165]: from pandas.util.testing import makeCustomDataframe as mkdf
In[166]: df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4)
In[167]: df.to_csv('mi.csv')
In[168]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2
In[169]: pd.read_csv('mi.csv', header=[0, 1, 2, 3], index_col=[0, 1])
Out[169]:
C0 C_l0_g0 C_l0_g1 C_l0_g2
C1 C_l1_g0 C_l1_g1 C_l1_g2
C2 C_l2_g0 C_l2_g1 C_l2_g2
C3 C_l3_g0 C_l3_g1 C_l3_g2
R0 R1
R_l0_g0 R_l1_g0 R0C0 R0C1 R0C2
R_l0_g1 R_l1_g1 R1C0 R1C1 R1C2
R_l0_g2 R_l1_g2 R2C0 R2C1 R2C2
R_l0_g3 R_l1_g3 R3C0 R3C1 R3C2
R_l0_g4 R_l1_g4 R4C0 R4C1 R4C2
read_csv
is also able to interpret a more common format of
multi-columns indices.
In[170]: print(open('mi2.csv').read())
,a,a,a,b,c,c
,q,r,s,t,u,v
one,1,2,3,4,5,6
two,7,8,9,10,11,12
In[171]: pd.read_csv('mi2.csv', header=[0, 1], index_col=0)
Out[171]:
a b c
q r s t u v
one 1 2 3 4 5 6
two 7 8 9 10 11 12
Note: If an index_col
is not specified (e.g. you don’t have an index,
or wrote it with df.to_csv(..., index=False)
, then any names
on the
columns index will be lost.
Automatically “sniffing” the delimiter¶
read_csv
is capable of inferring delimited (not necessarily
comma-separated) files, as pandas uses the
class of the csv module. For this, you have to specify sep=None
.
In[172]: print(open('tmp2.sv').read())
:0:1:2:3
0:0.4691122999071863:-0.2828633443286633:-1.5090585031735124:-1.1356323710171934
1:1.2121120250208506:-0.17321464905330858:0.11920871129693428:-1.0442359662799567
2:-0.8618489633477999:-2.1045692188948086:-0.4949292740687813:1.071803807037338
3:0.7215551622443669:-0.7067711336300845:-1.0395749851146963:0.27185988554282986
4:-0.42497232978883753:0.567020349793672:0.27623201927771873:-1.0874006912859915
5:-0.6736897080883706:0.1136484096888855:-1.4784265524372235:0.5249876671147047
6:0.4047052186802365:0.5770459859204836:-1.7150020161146375:-1.0392684835147725
7:-0.3706468582364464:-1.1578922506419993:-1.344311812731667:0.8448851414248841
8:1.0757697837155533:-0.10904997528022223:1.6435630703622064:-1.4693879595399115
9:0.35702056413309086:-0.6746001037299882:-1.776903716971867:-0.9689138124473498
In[173]: pd.read_csv('tmp2.sv', sep=None, engine='python')
Out[173]:
Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
4 4 -0.424972 0.567020 0.276232 -1.087401
5 5 -0.673690 0.113648 -1.478427 0.524988
6 6 0.404705 0.577046 -1.715002 -1.039268
7 7 -0.370647 -1.157892 -1.344312 0.844885
8 8 1.075770 -0.109050 1.643563 -1.469388
9 9 0.357021 -0.674600 -1.776904 -0.968914
Reading multiple files to create a single DataFrame¶
It’s best to use
to combine multiple files. See the
for an example.
Iterating through files chunk by chunk¶
Suppose you wish to iterate through a (potentially very large) file
lazily rather than reading the entire file into memory, such as the
following:
In[174]: print(open('tmp.sv').read())
|0|1|2|3
0|0.4691122999071863|-0.2828633443286633|-1.5090585031735124|-1.1356323710171934
1|1.2121120250208506|-0.17321464905330858|0.11920871129693428|-1.0442359662799567
2|-0.8618489633477999|-2.1045692188948086|-0.4949292740687813|1.071803807037338
3|0.7215551622443669|-0.7067711336300845|-1.0395749851146963|0.27185988554282986
4|-0.42497232978883753|0.567020349793672|0.27623201927771873|-1.0874006912859915
5|-0.6736897080883706|0.1136484096888855|-1.4784265524372235|0.5249876671147047
6|0.4047052186802365|0.5770459859204836|-1.7150020161146375|-1.0392684835147725
7|-0.3706468582364464|-1.1578922506419993|-1.344311812731667|0.8448851414248841
8|1.0757697837155533|-0.10904997528022223|1.6435630703622064|-1.4693879595399115
9|0.35702056413309086|-0.6746001037299882|-1.776903716971867|-0.9689138124473498
In[175]: table = pd.read_table('tmp.sv', sep='|')
In[176]: table
Out[176]:
Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
4 4 -0.424972 0.567020 0.276232 -1.087401
5 5 -0.673690 0.113648 -1.478427 0.524988
6 6 0.404705 0.577046 -1.715002 -1.039268
7 7 -0.370647 -1.157892 -1.344312 0.844885
8 8 1.075770 -0.109050 1.643563 -1.469388
9 9 0.357021 -0.674600 -1.776904 -0.968914
By specifying a chunksize
to read_csv
or read_table
, the return
value will be an iterable object of type TextFileReader
:
In[177]: reader = pd.read_table('tmp.sv', sep='|', chunksize=4)
In[178]: reader
Out[178]: <pandas.io.parsers.TextFileReader at 0x1c30400780>
In[179]: for chunk in reader:
.....: print(chunk)
.....:
Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
Unnamed: 0 0 1 2 3
4 4 -0.424972 0.567020 0.276232 -1.087401
5 5 -0.673690 0.113648 -1.478427 0.524988
6 6 0.404705 0.577046 -1.715002 -1.039268
7 7 -0.370647 -1.157892 -1.344312 0.844885
Unnamed: 0 0 1 2 3
8 8 1.075770 -0.10905 1.643563 -1.469388
9 9 0.357021 -0.67460 -1.776904 -0.968914
Specifying iterator=True
will also return the TextFileReader
object:
In[180]: reader = pd.read_table('tmp.sv', sep='|', iterator=True)
In[181]: reader.get_chunk(5)
Out[181]:
Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
4 4 -0.424972 0.567020 0.276232 -1.087401
Specifying the parser engine¶
Under the hood pandas uses a fast and efficient parser implemented in C
as well as a Python implementation which is currently more
feature-complete. Where possible pandas uses the C parser (specified as
engine='c'
), but may fall back to Python if C-unsupported options are
specified. Currently, C-unsupported options include:
-
sep
other than a single character (e.g. regex separators) -
skipfooter
-
sep=None
withdelim_whitespace=False
Specifying any of the above options will produce a ParserWarning
unless the python engine is selected explicitly using engine='python'
.
Reading remote files¶
You can pass in a URL to a CSV file:
df = pd.read_csv('https://download.bls.gov/pub/time.series/cu/cu.item',
sep='\t')
S3 URLs are handled as well:
df = pd.read_csv('s3://pandas-test/tips.csv')
Writing out Data¶
Writing to CSV format¶
The Series
and DataFrame
objects have an instance method to_csv
which allows storing the contents of the object as a
comma-separated-values file. The function takes a number of arguments.
Only the first is required.
path_or_buf
: A string path to the file to write or a StringIOsep
: Field delimiter for the output file (default “,”)na_rep
: A string representation of a missing value (default ‘’)float_format
: Format string for floating point numberscols
: Columns to write (default None)header
: Whether to write out the column names (default True)index
: whether to write row (index) names (default True)index_label
: Column label(s) for index column(s) if desired. If None (default), and header and index are True, then the index names are used. (A sequence should be given if theDataFrame
uses MultiIndex).mode
: Python write mode, default ‘w’encoding
: a string representing the encoding to use if the contents are non-ASCII, for Python versions prior to 3line_terminator
: Character sequence denoting line end (default ‘\n’)quoting
: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL). Note that if you have set a float_format then floats are converted to strings and csv.QUOTE_NONNUMERIC will treat them as non-numericquotechar
: Character used to quote fields (default ‘”’)doublequote
: Control quoting ofquotechar
in fields (default True)escapechar
: Character used to escapesep
andquotechar
when appropriate (default None)chunksize
: Number of rows to write at a timetupleize_cols
: If False (default), write as a list of tuples, otherwise write in an expanded line format suitable forread_csv
date_format
: Format string for datetime objects
Writing a formatted string¶
The DataFrame
object has an instance method to_string
which allows
control over the string representation of the object. All arguments are
optional:
buf
default None, for example a StringIO objectcolumns
default None, which columns to writecol_space
default None, minimum width of each column.na_rep
defaultNaN
, representation of NA valueformatters
default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted stringfloat_format
default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in theDataFrame
.sparsify
default True, set to False for aDataFrame
with a hierarchical index to print every multiindex key at each row.index_names
default True, will print the names of the indicesindex
default True, will print the index (ie, row labels)header
default True, will print the column labelsjustify
defaultleft
, will print column headers left- or right-justified
The Series
object also has a to_string
method, but with only the
argument which, if set to True
, will additionally output the length of
the Series.
JSON¶
Read and write JSON
format files and strings.
Writing JSON¶
A Series
or DataFrame
can be converted to a valid JSON string. Use
to_json
with optional parameters:
-
path_or_buf
: the pathname or buffer to write the output This canbe
None
in which case a JSON string is returned -
orient
:Series
:- default is
index
- allowed values are {
split
,records
,index
}
DataFrame
:- default is
columns
-
allowed values are {
split
,records
,index
,columns
,values
,table
}
The format of the JSON string
split
dict like {index -> [index], columns -> [columns], data -> [values]} records
list like [{column -> value}, … , {column -> value}] index
dict like {index -> {column -> value}} columns
dict like {column -> {index -> value}} values
just the values array - default is
-
date_format
: string, type of date conversion, ‘epoch’ fortimestamp, ‘iso’ for ISO8601.
-
double_precision
: The number of decimal places to use whenencoding floating point values, default 10.
-
force_ascii
: force encoded string to be ASCII, default True. -
date_unit
: The time unit to encode to, governs timestamp andISO8601 precision. One of ‘s’, ‘ms’, ‘us’ or ‘ns’ for seconds,
milliseconds, microseconds and nanoseconds respectively. Default
‘ms’. -
default_handler
: The handler to call if an object cannototherwise be converted to a suitable format for JSON. Takes a single
argument, which is the object to convert, and returns a serializable
object. -
lines
: Ifrecords
orient, then will write each record per lineas json.
Note NaN
’s, NaT
’s and None
will be converted to null
and
datetime
objects will be converted based on the date_format
and
date_unit
parameters.
In[182]: dfj = pd.DataFrame(randn(5, 2), columns=list('AB'))
In[183]: json = dfj.to_json()
In[184]: json
Out[184]: '{"A":{"0":-1.2945235903,"1":0.2766617129,"2":-0.0139597524,"3":-0.0061535699,"4":0.8957173022},"B":{"0":0.4137381054,"1":-0.472034511,"2":-0.3625429925,"3":-0.923060654,"4":0.8052440254}}'
Orient Options¶
There are a number of different options for the format of the resulting
JSON file / string. Consider the following DataFrame
and Series
:
In[185]: dfjo = pd.DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
.....: columns=list('ABC'), index=list('xyz'))
.....:
In[186]: dfjo
Out[186]:
A B C
x 1 4 7
y 2 5 8
z 3 6 9
In[187]: sjo = pd.Series(dict(x=15, y=16, z=17), name='D')
In[188]: sjo
Out[188]:
x 15
y 16
z 17
Name: D, dtype: int64
Column oriented (the default for DataFrame
) serializes the data as
nested JSON objects with column labels acting as the primary index:
In[189]: dfjo.to_json(orient="columns")
Out[189]: '{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}'
# Not available for Series
Index oriented (the default for Series
) similar to column oriented
but the index labels are now primary:
In[190]: dfjo.to_json(orient="index")
Out[190]: '{"x":{"A":1,"B":4,"C":7},"y":{"A":2,"B":5,"C":8},"z":{"A":3,"B":6,"C":9}}'
In[191]: sjo.to_json(orient="index")
Out[191]: '{"x":15,"y":16,"z":17}'
Record oriented serializes the data to a JSON array of column ->
value records, index labels are not included. This is useful for passing
DataFrame
data to plotting libraries, for example the JavaScript
library d3.js
:
In[192]: dfjo.to_json(orient="records")
Out[192]: '[{"A":1,"B":4,"C":7},{"A":2,"B":5,"C":8},{"A":3,"B":6,"C":9}]'
In[193]: sjo.to_json(orient="records")
Out[193]: '[15,16,17]'
Value oriented is a bare-bones option which serializes to nested
JSON arrays of values only, column and index labels are not included:
In[194]: dfjo.to_json(orient="values")
Out[194]: '[[1,4,7],[2,5,8],[3,6,9]]'
# Not available for Series
Split oriented serializes to a JSON object containing separate
entries for values, index and columns. Name is also included for
Series
:
In[195]: dfjo.to_json(orient="split")
Out[195]: '{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,6,9]]}'
In[196]: sjo.to_json(orient="split")
Out[196]: '{"name":"D","index":["x","y","z"],"data":[15,16,17]}'
Table oriented serializes to the JSON
Table Schema,
allowing for the preservation of metadata including but not limited to
dtypes and index names.
Note
Any orient option that encodes to a JSON object will not preserve the
ordering of index and column labels during round-trip serialization. If
you wish to preserve label ordering use the split option as it uses
ordered containers.
Date Handling¶
Writing in ISO date format:
In[197]: dfd = pd.DataFrame(randn(5, 2), columns=list('AB'))
In[198]: dfd['date'] = pd.Timestamp('20130101')
In[199]: dfd = dfd.sort_index(1, ascending=False)
In[200]: json = dfd.to_json(date_format='iso')
In[201]: json
Out[201]: '{"date":{"0":"2013-01-01T00:00:00.000Z","1":"2013-01-01T00:00:00.000Z","2":"2013-01-01T00:00:00.000Z","3":"2013-01-01T00:00:00.000Z","4":"2013-01-01T00:00:00.000Z"},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}'
Writing in ISO date format, with microseconds:
In[202]: json = dfd.to_json(date_format='iso', date_unit='us')
In[203]: json
Out[203]: '{"date":{"0":"2013-01-01T00:00:00.000000Z","1":"2013-01-01T00:00:00.000000Z","2":"2013-01-01T00:00:00.000000Z","3":"2013-01-01T00:00:00.000000Z","4":"2013-01-01T00:00:00.000000Z"},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}'
Epoch timestamps, in seconds:
In[204]: json = dfd.to_json(date_format='epoch', date_unit='s')
In[205]: json
Out[205]: '{"date":{"0":1356998400,"1":1356998400,"2":1356998400,"3":1356998400,"4":1356998400},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}'
Writing to a file, with a date index and a date column:
In[206]: dfj2 = dfj.copy()
In[207]: dfj2['date'] = pd.Timestamp('20130101')
In[208]: dfj2['ints'] = list(range(5))
In[209]: dfj2['bools'] = True
In[210]: dfj2.index = pd.date_range('20130101', periods=5)
In[211]: dfj2.to_json('test.json')
In[212]: open('test.json').read()
Out[212]: '{"A":{"1356998400000":-1.2945235903,"1357084800000":0.2766617129,"1357171200000":-0.0139597524,"1357257600000":-0.0061535699,"1357344000000":0.8957173022},"B":{"1356998400000":0.4137381054,"1357084800000":-0.472034511,"1357171200000":-0.3625429925,"1357257600000":-0.923060654,"1357344000000":0.8052440254},"date":{"1356998400000":1356998400000,"1357084800000":1356998400000,"1357171200000":1356998400000,"1357257600000":1356998400000,"1357344000000":1356998400000},"ints":{"1356998400000":0,"1357084800000":1,"1357171200000":2,"1357257600000":3,"1357344000000":4},"bools":{"1356998400000":true,"1357084800000":true,"1357171200000":true,"1357257600000":true,"1357344000000":true}}'
Fallback Behavior¶
If the JSON serializer cannot handle the container contents directly it
will fall back in the following manner:
-
if the dtype is unsupported (e.g.
np.complex
) then thedefault_handler
, if provided, will be called for each value,
otherwise an exception is raised. - if an object is unsupported it will attempt the following:
-
check if the object has defined a
toDict
method and call it. AtoDict
method should return adict
which will then be JSON
serialized. -
invoke the
default_handler
if one was provided. -
convert the object to a
dict
by traversing its contents.However this will often fail with an
OverflowError
or give
unexpected results.
-
In general the best approach for unsupported objects or dtypes is to
provide a default_handler
. For example:
DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json() # raises
RuntimeError: Unhandled numpy dtype 15
can be dealt with by specifying a simple default_handler
:
In[213]: pd.DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json(default_handler=str)
Out[213]: '{"0":{"0":"(1+0j)","1":"(2+0j)","2":"(1+2j)"}}'
Reading JSON¶
Reading a JSON string to pandas object can take a number of parameters.
The parser will try to parse a DataFrame
if typ
is not supplied or
is None
. To explicitly force Series
parsing, pass typ=series
-
filepath_or_buffer
: a VALID JSON string or file handle /StringIO. The string could be a URL. Valid URL schemes include http,
ftp, S3, and file. For file URLs, a host is expected. For instance,
a local file could be file ://localhost/path/to/table.json -
typ
: type of object to recover (series or frame), default ‘frame’ -
orient
:Series :
- default is
index
- allowed values are {
split
,records
,index
}
DataFrame
- default is
columns
-
allowed values are {
split
,records
,index
,columns
,values
,table
}
The format of the JSON string
split
dict like {index -> [index], columns -> [columns], data -> [values]} records
list like [{column -> value}, … , {column -> value}] index
dict like {index -> {column -> value}} columns
dict like {column -> {index -> value}} values
just the values array table
adhering to the JSON Table Schema - default is
-
dtype
: if True, infer dtypes, if a dict of column to dtype, thenuse those, if
False
, then don’t infer dtypes at all, default is
True, apply only to the data. -
convert_axes
: boolean, try to convert the axes to the properdtypes, default is
True
-
convert_dates
: a list of columns to parse for dates; IfTrue
,then try to parse date-like columns, default is
True
. -
keep_default_dates
: boolean, defaultTrue
. If parsing dates,then parse the default date-like columns.
-
numpy
: direct decoding to NumPy arrays. default isFalse
;Supports numeric data only, although labels may be non-numeric. Also
note that the JSON ordering MUST be the same for each term if
numpy=True
. -
precise_float
: boolean, defaultFalse
. Set to enable usage ofhigher precision (strtod) function when decoding string to double
values. Default (False
) is to use fast but less precise builtin
functionality. -
date_unit
: string, the timestamp unit to detect if convertingdates. Default None. By default the timestamp precision will be
detected, if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or
‘ns’ to force timestamp precision to seconds, milliseconds,
microseconds or nanoseconds respectively. -
lines
: reads file as one json object per line. -
encoding
: The encoding to use to decode py3 bytes. -
chunksize
: when used in combination withlines=True
, return aJsonReader which reads in
chunksize
lines per iteration.
The parser will raise one of ValueError/TypeError/AssertionError
if
the JSON is not parseable.
If a non-default orient
was used when encoding to JSON be sure to pass
the same option here so that decoding produces sensible results, see
for an overview.
Data Conversion¶
The default of convert_axes=True
, dtype=True
, and
convert_dates=True
will try to parse the axes, and all of the data
into appropriate types, including dates. If you need to override
specific dtypes, pass a dict to dtype
. convert_axes
should only be
set to False
if you need to preserve string-like numbers (e.g. ‘1’,
‘2’) in an axes.
Note
Large integer values may be converted to dates if convert_dates=True
and the data and / or column labels appear ‘date-like’. The exact
threshold depends on the date_unit
specified. ‘date-like’ means that
the column label meets one of the following criteria:
- it ends with
'_at'
- it ends with
'_time'
- it begins with
'timestamp'
- it is
'modified'
- it is
'date'
Warning
When reading JSON data, automatic coercing into dtypes has some quirks:
- an index can be reconstructed in a different order from serialization, that is, the returned order is not guaranteed to be the same as before serialization
- a column that was
float
data will be converted tointeger
if it can be done safely, e.g. a column of1.
- bool columns will be converted to
integer
on reconstruction
Thus there are times where you may want to specify specific dtypes via
the dtype
keyword argument.
Reading from a JSON string:
In[214]: pd.read_json(json)
Out[214]:
date B A
0 2013-01-01 2.565646 -1.206412
1 2013-01-01 1.340309 1.431256
2 2013-01-01 -0.226169 -1.170299
3 2013-01-01 0.813850 0.410835
4 2013-01-01 -0.827317 0.132003
Reading from a file:
In[215]: pd.read_json('test.json')
Out[215]:
A B date ints bools
2013-01-01 -1.294524 0.413738 2013-01-01 0 True
2013-01-02 0.276662 -0.472035 2013-01-01 1 True
2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
2013-01-05 0.895717 0.805244 2013-01-01 4 True
Don’t convert any data (but still convert axes and dates):
In[216]: pd.read_json('test.json', dtype=object).dtypes
Out[216]:
A object
B object
date object
ints object
bools object
dtype: object
Specify dtypes for conversion:
In[217]: pd.read_json('test.json', dtype={'A': 'float32', 'bools': 'int8'}).dtypes
Out[217]:
A float32
B float64
date datetime64[ns]
ints int64
bools int8
dtype: object
Preserve string indices:
In[218]: si = pd.DataFrame(np.zeros((4, 4)),
.....: columns=list(range(4)),
.....: index=[str(i) for i in range(4)])
.....:
In[219]: si
Out[219]:
0 1 2 3
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
In[220]: si.index
Out[220]: Index(['0', '1', '2', '3'], dtype='object')
In[221]: si.columns
Out[221]: Int64Index([0, 1, 2, 3], dtype='int64')
In[222]: json = si.to_json()
In[223]: sij = pd.read_json(json, convert_axes=False)
In[224]: sij
Out[224]:
0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
In[225]: sij.index
Out[225]: Index(['0', '1', '2', '3'], dtype='object')
In[226]: sij.columns
Out[226]: Index(['0', '1', '2', '3'], dtype='object')
Dates written in nanoseconds need to be read back in nanoseconds:
In[227]: json = dfj2.to_json(date_unit='ns')
# Try to parse timestamps as millseconds -> Won't Work
In[228]: dfju = pd.read_json(json, date_unit='ms')
In[229]: dfju
Out[229]:
A B date ints bools
1356998400000000000 -1.294524 0.413738 1356998400000000000 0 True
1357084800000000000 0.276662 -0.472035 1356998400000000000 1 True
1357171200000000000 -0.013960 -0.362543 1356998400000000000 2 True
1357257600000000000 -0.006154 -0.923061 1356998400000000000 3 True
1357344000000000000 0.895717 0.805244 1356998400000000000 4 True
# Let pandas detect the correct precision
In[230]: dfju = pd.read_json(json)
In[231]: dfju
Out[231]:
A B date ints bools
2013-01-01 -1.294524 0.413738 2013-01-01 0 True
2013-01-02 0.276662 -0.472035 2013-01-01 1 True
2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
2013-01-05 0.895717 0.805244 2013-01-01 4 True
# Or specify that all timestamps are in nanoseconds
In[232]: dfju = pd.read_json(json, date_unit='ns')
In[233]: dfju
Out[233]:
A B date ints bools
2013-01-01 -1.294524 0.413738 2013-01-01 0 True
2013-01-02 0.276662 -0.472035 2013-01-01 1 True
2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
2013-01-05 0.895717 0.805244 2013-01-01 4 True
The Numpy Parameter¶
Note
This supports numeric data only. Index and columns labels may be
non-numeric, e.g. strings, dates etc.
If numpy=True
is passed to read_json
an attempt will be made to
sniff an appropriate dtype during deserialization and to subsequently
decode directly to NumPy arrays, bypassing the need for intermediate
Python objects.
This can provide speedups if you are deserialising a large amount of
numeric data:
In[234]: randfloats = np.random.uniform(-100, 1000, 10000)
In[235]: randfloats.shape = (1000, 10)
In[236]: dffloats = pd.DataFrame(randfloats, columns=list('ABCDEFGHIJ'))
In[237]: jsonfloats = dffloats.to_json()
In[238]: timeit pd.read_json(jsonfloats)
15.3 ms +- 2.24 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
In[239]: timeit pd.read_json(jsonfloats, numpy=True)
11.6 ms +- 1.2 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
The speedup is less noticeable for smaller datasets:
In[240]: jsonfloats = dffloats.head(100).to_json()
In[241]: timeit pd.read_json(jsonfloats)
8.24 ms +- 453 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
In[242]: timeit pd.read_json(jsonfloats, numpy=True)
7.59 ms +- 565 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
Warning
Direct NumPy decoding makes a number of assumptions and may fail or
produce unexpected output if these assumptions are not satisfied:
- data is numeric.
- data is uniform. The dtype is sniffed from the first value decoded. A
ValueError
may be raised, or incorrect output may be produced if this condition is not satisfied.- labels are ordered. Labels are only read from the first container, it is assumed that each subsequent row / column has been encoded in the same order. This should be satisfied if the data was encoded using
to_json
but may not be the case if the JSON is from another source.
Normalization¶
pandas provides a utility function to take a dict or list of dicts and
normalize this semi-structured data into a flat table.
In[243]: from pandas.io.json import json_normalize
In[244]: data = [{'id': 1, 'name': {'first': 'Coleen', 'last': 'Volk'}},
.....: {'name': {'given': 'Mose', 'family': 'Regner'}},
.....: {'id': 2, 'name': 'Faye Raker'}]
.....:
In[245]: json_normalize(data)
Out[245]:
id name name.family name.first name.given name.last
0 1.0 NaN NaN Coleen NaN Volk
1 NaN NaN Regner NaN Mose NaN
2 2.0 Faye Raker NaN NaN NaN NaN
In[246]: data = [{'state': 'Florida',
.....: 'shortname': 'FL',
.....: 'info': {
.....: 'governor': 'Rick Scott'
.....: },
.....: 'counties': [{'name': 'Dade', 'population': 12345},
.....: {'name': 'Broward', 'population': 40000},
.....: {'name': 'Palm Beach', 'population': 60000}]},
.....: {'state': 'Ohio',
.....: 'shortname': 'OH',
.....: 'info': {
.....: 'governor': 'John Kasich'
.....: },
.....: 'counties': [{'name': 'Summit', 'population': 1234},
.....: {'name': 'Cuyahoga', 'population': 1337}]}]
.....:
In[247]: json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])
Out[247]:
name population state shortname info.governor
0 Dade 12345 Florida FL Rick Scott
1 Broward 40000 Florida FL Rick Scott
2 Palm Beach 60000 Florida FL Rick Scott
3 Summit 1234 Ohio OH John Kasich
4 Cuyahoga 1337 Ohio OH John Kasich
Line delimited json¶
New in version 0.19.0.
pandas is able to read and write line-delimited json files that are
common in data processing pipelines using Hadoop or Spark.
New in version 0.21.0.
For line-delimited json files, pandas can also return an iterator which
reads in chunksize
lines at a time. This can be useful for large files
or to read from a stream.
In[248]: jsonl = '''
.....: {"a": 1, "b": 2}
.....: {"a": 3, "b": 4}
.....: '''
.....:
In[249]: df = pd.read_json(jsonl, lines=True)
In[250]: df
Out[250]:
a b
0 1 2
1 3 4
In[251]: df.to_json(orient='records', lines=True)
Out[251]: '{"a":1,"b":2}\n{"a":3,"b":4}'
# reader is an iterator that returns `chunksize` lines each iteration
In[252]: reader = pd.read_json(StringIO(jsonl), lines=True, chunksize=1)
In[253]: reader
Out[253]: <pandas.io.json.json.JsonReader at 0x1c31c5a208>
In[254]: for chunk in reader:
.....: print(chunk)
.....:
Empty DataFrame
Columns: []
Index: []
a b
0 1 2
a b
1 3 4
Table Schema¶
New in version 0.20.0.
is a spec for describing tabular datasets as a JSON object. The JSON
includes information on the field names, types, and other attributes.
You can use the orient table
to build a JSON string with two fields,
schema
and data
.
In[255]: df = pd.DataFrame(
.....: {'A': [1, 2, 3],
.....: 'B': ['a', 'b', 'c'],
.....: 'C': pd.date_range('2016-01-01', freq='d', periods=3),
.....: }, index=pd.Index(range(3), name='idx'))
.....:
In[256]: df
Out[256]:
A B C
idx
0 1 a 2016-01-01
1 2 b 2016-01-02
2 3 c 2016-01-03
In[257]: df.to_json(orient='table', date_format="iso")
Out[257]: '{"schema": {"fields":[{"name":"idx","type":"integer"},{"name":"A","type":"integer"},{"name":"B","type":"string"},{"name":"C","type":"datetime"}],"primaryKey":["idx"],"pandas_version":"0.20.0"}, "data": [{"idx":0,"A":1,"B":"a","C":"2016-01-01T00:00:00.000Z"},{"idx":1,"A":2,"B":"b","C":"2016-01-02T00:00:00.000Z"},{"idx":2,"A":3,"B":"c","C":"2016-01-03T00:00:00.000Z"}]}'
The schema
field contains the fields
key, which itself contains a
list of column name to type pairs, including the Index
or MultiIndex
(see below for a list of types). The schema
field also contains a
primaryKey
field if the (Multi)index is unique.
The second field, data
, contains the serialized data with the
records
orient. The index is included, and any datetimes are ISO 8601
formatted, as required by the Table Schema spec.
The full list of types supported are described in the Table Schema spec.
This table shows the mapping from pandas types:
Pandas type | Table Schema type |
---|---|
int64 | integer |
float64 | number |
bool | boolean |
datetime64[ns] | datetime |
timedelta64[ns] | duration |
categorical | any |
object | str |
A few notes on the generated table schema:
-
The
schema
object contains apandas_version
field. This containsthe version of pandas’ dialect of the schema, and will be
incremented with each revision. - All dates are converted to UTC when serializing. Even timezone naïve
values, which are treated as UTC with an offset of 0.
In[258]: from pandas.io.json import build_table_schema In[259]: s = pd.Series(pd.date_range('2016', periods=4)) In[260]: build_table_schema(s) Out[260]: {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'datetime'}], 'primaryKey': ['index'], 'pandas_version': '0.20.0'}
- datetimes with a timezone (before serializing), include an
additional field
tz
with the time zone name (e.g.'US/Central'
).In[261]: s_tz = pd.Series(pd.date_range('2016', periods=12, .....: tz='US/Central')) .....: In[262]: build_table_schema(s_tz) Out[262]: {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'datetime', 'tz': 'US/Central'}], 'primaryKey': ['index'], 'pandas_version': '0.20.0'}
- Periods are converted to timestamps before serialization, and so
have the same behavior of being converted to UTC. In addition,
periods will contain and additional fieldfreq
with the period’s
frequency, e.g.'A-DEC'
.In[263]: s_per = pd.Series(1, index=pd.period_range('2016', freq='A-DEC', .....: periods=4)) .....: In[264]: build_table_schema(s_per) Out[264]: {'fields': [{'name': 'index', 'type': 'datetime', 'freq': 'A-DEC'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index'], 'pandas_version': '0.20.0'}
-
Categoricals use the
any
type and anenum
constraint listing theset of possible values. Additionally, an
ordered
field is
included:In[265]: s_cat = pd.Series(pd.Categorical(['a', 'b', 'a'])) In[266]: build_table_schema(s_cat) Out[266]: {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'any', 'constraints': {'enum': ['a', 'b']}, 'ordered': False}], 'primaryKey': ['index'], 'pandas_version': '0.20.0'}
-
A
primaryKey
field, containing an array of labels, is included *ifthe index is unique*:
In[267]: s_dupe = pd.Series([1, 2], index=[1, 1]) In[268]: build_table_schema(s_dupe) Out[268]: {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'pandas_version': '0.20.0'}
-
The
primaryKey
behavior is the same with MultiIndexes, but in thiscase the
primaryKey
is an array:In[269]: s_multi = pd.Series(1, index=pd.MultiIndex.from_product([('a', 'b'), .....: (0, 1)])) .....: In[270]: build_table_schema(s_multi) Out[270]: {'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': FrozenList(['level_0', 'level_1']), 'pandas_version': '0.20.0'}
- The default naming roughly follows these rules:
-
For series, the
object.name
is used. If that’s none, then thename is
values
-
For
DataFrames
, the stringified version of the column name isused
-
For
Index
(notMultiIndex
),index.name
is used, with afallback to
index
if that is None. -
For
MultiIndex
,mi.names
is used. If any level has no name,then
level_<i>
is used.
-
New in version 0.23.0.
read_json
also accepts orient='table'
as an argument. This allows
for the preserveration of metadata such as dtypes and index names in a
round-trippable manner.
In[271]: df = pd.DataFrame({'foo': [1, 2, 3, 4], .....: 'bar': ['a', 'b', 'c', 'd'], .....: 'baz': pd.date_range('2018-01-01', freq='d', periods=4), .....: 'qux': pd.Categorical(['a', 'b', 'c', 'c']) .....: }, index=pd.Index(range(4), name='idx')) .....:
In[272]: df
Out[272]:
foo bar baz qux
idx
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c
In[273]: df.dtypes
Out[273]:
foo int64
bar object
baz datetime64
qux category
dtype: object
In[274]: df.to_json('test.json', orient='table')
In[275]: new_df = pd.read_json('test.json', orient='table')
In[276]: new_df
Out[276]:
foo bar baz qux
idx
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c
In[277]: new_df.dtypes
Out[277]:
foo int64
bar object
baz datetime64
qux category
dtype: object
Please note that the literal string ‘index’ as the name of an
is not round-trippable, nor are any names beginning with 'level_'
within a
MultiIndex
.
These are used by default in
to indicate missing values and the subsequent read cannot distinguish
the intent.
In[278]: df.index.name = 'index'
In[279]: df.to_json('test.json', orient='table')
In[280]: new_df = pd.read_json('test.json', orient='table')
In[281]: print(new_df.index.name)
None
HTML¶
Reading HTML Content¶
Warning
We highly encourage you to read the
below regarding the issues surrounding the BeautifulSoup4/html5lib/lxml
parsers.
The top-level read_html()
function can accept an HTML string/file/URL
and will parse HTML tables into list of pandas DataFrames
. Let’s look
at a few examples.
Note
read_html
returns a list
of DataFrame
objects, even if there is
only a single table contained in the HTML content.
Read a URL with no options:
In[282]: url = 'http://www.fdic.gov/bank/individual/failed/banklist.html'
In[283]: dfs = pd.read_html(url)
In[284]: dfs
Out[284]:
[ Bank Name City ... Closing Date Updated Date
0 Washington Federal Bank for Savings Chicago ... December 15, 2017 February 21, 2018
1 The Farmers and Merchants State Bank of Argonia Argonia ... October 13, 2017 February 21, 2018
2 Fayette County Bank Saint Elmo ... May 26, 2017 July 26, 2017
3 Guaranty Bank, (d/b/a BestBank in Georgia & Mi... Milwaukee ... May 5, 2017 March 22, 2018
4 First NBC Bank New Orleans ... April 28, 2017 December 5, 2017
5 Proficio Bank Cottonwood Heights ... March 3, 2017 March 7, 2018
6 Seaway Bank and Trust Company Chicago ... January 27, 2017 May 18, 2017
.. ... ... ... ... ...
548 Hamilton Bank, NA En Espanol Miami ... January 11, 2002 September 21, 2015
549 Sinclair National Bank Gravette ... September 7, 2001 October 6, 2017
550 Superior Bank, FSB Hinsdale ... July 27, 2001 August 19, 2014
551 Malta National Bank Malta ... May 3, 2001 November 18, 2002
552 First Alliance Bank & Trust Co. Manchester ... February 2, 2001 February 18, 2003
553 National State Bank of Metropolis Metropolis ... December 14, 2000 March 17, 2005
554 Bank of Honolulu Honolulu ... October 13, 2000 March 17, 2005
[555 rows x 7 columns]]
Note
The data from the above URL changes every Monday so the resulting data
above and the data below may be slightly different.
Read in the content of the file from the above URL and pass it to
read_html
as a string:
In[285]: with open(file_path, 'r') as f:
.....: dfs = pd.read_html(f.read())
.....:
In[286]: dfs
Out[286]:
[ Bank Name City ST ... Acquiring Institution Closing Date Updated Date
0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI ... North Shore Bank, FSB May 31, 2013 May 31, 2013
1 Central Arizona Bank Scottsdale AZ ... Western State Bank May 14, 2013 May 20, 2013
2 Sunrise Bank Valdosta GA ... Synovus Bank May 10, 2013 May 21, 2013
3 Pisgah Community Bank Asheville NC ... Capital Bank, N.A. May 10, 2013 May 14, 2013
4 Douglas County Bank Douglasville GA ... Hamilton State Bank April 26, 2013 May 16, 2013
5 Parkway Bank Lenoir NC ... CertusBank, National Association April 26, 2013 May 17, 2013
6 Chipola Community Bank Marianna FL ... First Federal Bank of Florida April 19, 2013 May 16, 2013
.. ... ... .. ... ... ... ...
498 Hamilton Bank, NAEn Espanol Miami FL ... Israel Discount Bank of New York January 11, 2002 June 5, 2012
499 Sinclair National Bank Gravette AR ... Delta Trust & Bank September 7, 2001 February 10, 2004
500 Superior Bank, FSB Hinsdale IL ... Superior Federal, FSB July 27, 2001 June 5, 2012
501 Malta National Bank Malta OH ... North Valley Bank May 3, 2001 November 18, 2002
502 First Alliance Bank & Trust Co. Manchester NH ... Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003
503 National State Bank of Metropolis Metropolis IL ... Banterra Bank of Marion December 14, 2000 March 17, 2005
504 Bank of Honolulu Honolulu HI ... Bank of the Orient October 13, 2000 March 17, 2005
[505 rows x 7 columns]]
You can even pass in an instance of StringIO
if you so desire:
In[287]: with open(file_path, 'r') as f:
.....: sio = StringIO(f.read())
.....:
In[288]: dfs = pd.read_html(sio)
In[289]: dfs
Out[289]:
[ Bank Name City ST ... Acquiring Institution Closing Date Updated Date
0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI ... North Shore Bank, FSB May 31, 2013 May 31, 2013
1 Central Arizona Bank Scottsdale AZ ... Western State Bank May 14, 2013 May 20, 2013
2 Sunrise Bank Valdosta GA ... Synovus Bank May 10, 2013 May 21, 2013
3 Pisgah Community Bank Asheville NC ... Capital Bank, N.A. May 10, 2013 May 14, 2013
4 Douglas County Bank Douglasville GA ... Hamilton State Bank April 26, 2013 May 16, 2013
5 Parkway Bank Lenoir NC ... CertusBank, National Association April 26, 2013 May 17, 2013
6 Chipola Community Bank Marianna FL ... First Federal Bank of Florida April 19, 2013 May 16, 2013
.. ... ... .. ... ... ... ...
498 Hamilton Bank, NAEn Espanol Miami FL ... Israel Discount Bank of New York January 11, 2002 June 5, 2012
499 Sinclair National Bank Gravette AR ... Delta Trust & Bank September 7, 2001 February 10, 2004
500 Superior Bank, FSB Hinsdale IL ... Superior Federal, FSB July 27, 2001 June 5, 2012
501 Malta National Bank Malta OH ... North Valley Bank May 3, 2001 November 18, 2002
502 First Alliance Bank & Trust Co. Manchester NH ... Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003
503 National State Bank of Metropolis Metropolis IL ... Banterra Bank of Marion December 14, 2000 March 17, 2005
504 Bank of Honolulu Honolulu HI ... Bank of the Orient October 13, 2000 March 17, 2005
[505 rows x 7 columns]]
Note
The following examples are not run by the IPython evaluator due to the
fact that having so many network-accessing functions slows down the
documentation build. If you spot an error or an example that doesn’t
run, please do not hesitate to report it over on
pandas GitHub issues page.
Read a URL and match a table that contains specific text:
match = 'Metcalf Bank'
df_list = pd.read_html(url, match=match)
Specify a header row (by default <th>
or <td>
elements located
within a <thead>
are used to form the column index, if multiple rows
are contained within <thead>
then a multiindex is created); if
specified, the header row is taken from the data minus the parsed header
elements (<th>
elements).
dfs = pd.read_html(url, header=0)
Specify an index column:
dfs = pd.read_html(url, index_col=0)
Specify a number of rows to skip:
dfs = pd.read_html(url, skiprows=0)
Specify a number of rows to skip using a list (xrange
(Python 2 only)
works as well):
dfs = pd.read_html(url, skiprows=range(2))
Specify an HTML attribute:
dfs1 = pd.read_html(url, attrs={'id': 'table'})
dfs2 = pd.read_html(url, attrs={'class': 'sortable'})
print(np.array_equal(dfs1[0], dfs2[0])) # Should be True
Specify values that should be converted to NaN:
dfs = pd.read_html(url, na_values=['No Acquirer'])
New in version 0.19.
Specify whether to keep the default set of NaN values:
dfs = pd.read_html(url, keep_default_na=False)
New in version 0.19.
Specify converters for columns. This is useful for numerical text data
that has leading zeros. By default columns that are numerical are cast
to numeric types and the leading zeros are lost. To avoid this, we can
convert these columns to strings.
url_mcc = 'https://en.wikipedia.org/wiki/Mobile_country_code'
dfs = pd.read_html(url_mcc, match='Telekom Albania', header=0, converters={'MNC':
str})
New in version 0.19.
Use some combination of the above:
dfs = pd.read_html(url, match='Metcalf Bank', index_col=0)
Read in pandas to_html
output (with some loss of floating point
precision):
df = pd.DataFrame(randn(2, 2))
s = df.to_html(float_format='{0:.40g}'.format)
dfin = pd.read_html(s, index_col=0)
The lxml
backend will raise an error on a failed parse if that is the
only parser you provide. If you only have a single parser you can
provide just a string, but it is considered good practice to pass a list
with one string if, for example, the function expects a sequence of
strings. You may use:
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])
Or you could pass flavor='lxml'
without a list:
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')
However, if you have bs4 and html5lib installed and pass None
or
['lxml', 'bs4']
then the parse will most likely succeed. Note that as
soon as a parse succeeds, the function will return.
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml', 'bs4'])
Writing to HTML files¶
DataFrame
objects have an instance method to_html
which renders the
contents of the DataFrame
as an HTML table. The function arguments are
as in the method to_string
described above.
Note
Not all of the possible options for DataFrame.to_html
are shown here
for brevity’s sake. See to_html()
for the full set of options.
In[290]: df = pd.DataFrame(randn(2, 2))
In[291]: df
Out[291]:
0 1
0 -0.184744 0.496971
1 -0.856240 1.857977
In[292]: print(df.to_html()) # raw html
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
<td>0.496971</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
<td>1.857977</td>
</tr>
</tbody>
</table>
HTML:
0 | 1 | |
---|---|---|
0 | -0.184744 | 0.496971 |
1 | -0.856240 | 1.857977 |
The columns
argument will limit the columns shown:
In[293]: print(df.to_html(columns=[0]))
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
</tr>
</tbody>
</table>
HTML:
0 | |
---|---|
0 | -0.184744 |
1 | -0.856240 |
float_format
takes a Python callable to control the precision of
floating point values:
In[294]: print(df.to_html(float_format='{0:.10f}'.format))
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.1847438576</td>
<td>0.4969711327</td>
</tr>
<tr>
<th>1</th>
<td>-0.8562396763</td>
<td>1.8579766508</td>
</tr>
</tbody>
</table>
HTML:
0 | 1 | |
---|---|---|
0 | -0.1847438576 | 0.4969711327 |
1 | -0.8562396763 | 1.8579766508 |
bold_rows
will make the row labels bold by default, but you can turn
that off:
In[295]: print(df.to_html(bold_rows=False))
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.184744</td>
<td>0.496971</td>
</tr>
<tr>
<td>1</td>
<td>-0.856240</td>
<td>1.857977</td>
</tr>
</tbody>
</table>
0 | 1 | |
---|---|---|
0 | -0.184744 | 0.496971 |
1 | -0.856240 | 1.857977 |
The classes
argument provides the ability to give the resulting HTML
table CSS classes. Note that these classes are appended to the
existing 'dataframe'
class.
In[296]: print(df.to_html(classes=['awesome_table_class', 'even_more_awesome_class']))
<table border="1" class="dataframe awesome_table_class even_more_awesome_class">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
<td>0.496971</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
<td>1.857977</td>
</tr>
</tbody>
</table>
Finally, the escape
argument allows you to control whether the “<”,
“>” and “&” characters escaped in the resulting HTML (by default it
is True
). So to get the HTML without escaped characters pass
In[297]: df = pd.DataFrame({'a': list('&<>'), 'b': randn(3)})
Escaped:
In[298]: print(df.to_html())
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>&</td>
<td>-0.474063</td>
</tr>
<tr>
<th>1</th>
<td><</td>
<td>-0.230305</td>
</tr>
<tr>
<th>2</th>
<td>></td>
<td>-0.400654</td>
</tr>
</tbody>
</table>
a | b | |
---|---|---|
0 | & | -0.474063 |
1 | < | -0.230305 |
2 | > | -0.400654 |
Not escaped:
In[299]: print(df.to_html(escape=False))
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>&</td>
<td>-0.474063</td>
</tr>
<tr>
<th>1</th>
<td><</td>
<td>-0.230305</td>
</tr>
<tr>
<th>2</th>
<td>></td>
<td>-0.400654</td>
</tr>
</tbody>
</table>
a | b | |
---|---|---|
0 | & | -0.474063 |
1 | < | -0.230305 |
2 | > | -0.400654 |
Note
Some browsers may not show a difference in the rendering of the previous
two HTML tables.
HTML Table Parsing Gotchas¶
There are some versioning issues surrounding the libraries that are used
to parse HTML tables in the top-level pandas io function read_html
.
- Benefits
- Drawbacks
- lxml does not make any guarantees about the results of its parse unless it is given strictly valid markup.
- In light of the above, we have chosen to allow you, the user, to use the lxml backend, but this backend will use html5lib if lxml fails to parse
- It is therefore highly recommended that you install both BeautifulSoup4 and html5lib, so that you will still get a valid result (provided everything else is valid) even if lxml fails.
- The above issues hold here as well since BeautifulSoup4 is essentially just a wrapper around a parser backend.
- Benefits
- html5lib is far more lenient than lxml and consequently deals with real-life markup in a much saner way rather than just, e.g., dropping an element without notifying you.
- html5lib generates valid HTML5 markup from invalid markup automatically. This is extremely important for parsing HTML tables, since it guarantees a valid document. However, that does NOT mean that it is “correct”, since the process of fixing markup does not have a single definition.
- html5lib is pure Python and requires no additional build steps beyond its own installation.
- Drawbacks
- The biggest drawback to using html5lib is that it is slow as molasses. However consider the fact that many tables on the web are not big enough for the parsing algorithm runtime to matter. It is more likely that the bottleneck will be in the process of reading the raw text from the URL over the web, i.e., IO (input-output). For very large tables, this might not be true.
Excel files¶
The
method can read Excel 2003 (.xls
) and Excel 2007+ (.xlsx
) files
using the xlrd
Python module. The
instance method is used for saving a DataFrame
to Excel. Generally the
semantics are similar to working with
data. See the
for some advanced strategies.
Reading Excel Files¶
In the most basic use-case, read_excel
takes a path to an Excel file,
and the sheet_name
indicating which sheet to parse.
# Returns a DataFrame
read_excel('path_to_file.xls', sheet_name='Sheet1')
ExcelFile
class¶
To facilitate working with multiple sheets from the same file, the
ExcelFile
class can be used to wrap the file and can be passed into
read_excel
There will be a performance benefit for reading multiple
sheets as the file is read into memory only once.
xlsx = pd.ExcelFile('path_to_file.xls')
df = pd.read_excel(xlsx, 'Sheet1')
The ExcelFile
class can also be used as a context manager.
with pd.ExcelFile('path_to_file.xls') as xls:
df1 = pd.read_excel(xls, 'Sheet1')
df2 = pd.read_excel(xls, 'Sheet2')
The sheet_names
property will generate a list of the sheet names in
the file.
The primary use-case for an ExcelFile
is parsing multiple sheets with
different parameters:
data = {}
# For when Sheet1's format differs from Sheet2
with pd.ExcelFile('path_to_file.xls') as xls:
data['Sheet1'] = pd.read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
data['Sheet2'] = pd.read_excel(xls, 'Sheet2', index_col=1)
Note that if the same parsing parameters are used for all sheets, a list
of sheet names can simply be passed to read_excel
with no loss in
performance.
# using the ExcelFile class
data = {}
with pd.ExcelFile('path_to_file.xls') as xls:
data['Sheet1'] = read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
data['Sheet2'] = read_excel(xls, 'Sheet2', index_col=None, na_values=['NA'])
# equivalent using the read_excel function
data = read_excel('path_to_file.xls', ['Sheet1', 'Sheet2'], index_col=None, na_values=['NA'])
Specifying Sheets¶
Note
The second argument is sheet_name
, not to be confused with
ExcelFile.sheet_names
.
Note
An ExcelFile’s attribute sheet_names
provides access to a list of
sheets.
-
The arguments
sheet_name
allows specifying the sheet or sheets toread.
-
The default value for
sheet_name
is 0, indicating to read thefirst sheet
- Pass a string to refer to the name of a particular sheet in the
workbook.
- Pass an integer to refer to the index of a sheet. Indices follow
Python convention, beginning at 0.
- Pass a list of either strings or integers, to return a dictionary of
specified sheets.
-
Pass a
None
to return a dictionary of all available sheets.Returns a DataFrame
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
Using the sheet index:
# Returns a DataFrame
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])
Using all default values:
# Returns a DataFrame
read_excel('path_to_file.xls')
Using None to get all sheets:
# Returns a dictionary of DataFrames
read_excel('path_to_file.xls', sheet_name=None)
Using a list to get multiple sheets:
# Returns the 1st and 4th sheet, as a dictionary of DataFrames.
read_excel('path_to_file.xls', sheet_name=['Sheet1', 3])
read_excel
can read more than one sheet, by setting sheet_name
to
either a list of sheet names, a list of sheet positions, or None
to
read all sheets. Sheets can be specified by sheet index or sheet name,
using an integer or string, respectively.
Reading a MultiIndex
¶
read_excel
can read a MultiIndex
index, by passing a list of columns
to index_col
and a MultiIndex
column by passing a list of rows to
header
. If either the index
or columns
have serialized level names
those will be read in as well by specifying the rows/columns that make
up the levels.
For example, to read in a MultiIndex
index without names:
In[300]: df = pd.DataFrame({'a':[1, 2, 3, 4], 'b':[5, 6, 7, 8]},
.....: index=pd.MultiIndex.from_product([['a', 'b'],['c', 'd']]))
.....:
In[301]: df.to_excel('path_to_file.xlsx')
In[302]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1])
In[303]: df
Out[303]:
a b
a c 1 5
d 2 6
b c 3 7
d 4 8
If the index has level names, they will parsed as well, using the same
parameters.
In[304]: df.index = df.index.set_names(['lvl1', 'lvl2'])
In[305]: df.to_excel('path_to_file.xlsx')
In[306]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1])
In[307]: df
Out[307]:
a b
lvl1 lvl2
a c 1 5
d 2 6
b c 3 7
d 4 8
If the source file has both MultiIndex
index and columns, lists
specifying each should be passed to index_col
and header
:
In[308]: df.columns = pd.MultiIndex.from_product([['a'], ['b', 'd']], names=['c1', 'c2'])
In[309]: df.to_excel('path_to_file.xlsx')
In[310]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1], header=[0, 1])
In[311]: df
Out[311]:
c1 a
c2 b d
lvl1 lvl2
a c 1 5
d 2 6
b c 3 7
d 4 8
Parsing Specific Columns¶
It is often the case that users will insert columns to do temporary
computations in Excel and you may not want to read in those columns.
read_excel
takes a usecols
keyword to allow you to specify a subset
of columns to parse.
If usecols
is an integer, then it is assumed to indicate the last
column to be parsed.
read_excel('path_to_file.xls', 'Sheet1', usecols=2)
If usecols is a list of integers, then it is assumed to be the file
column indices to be parsed.
read_excel('path_to_file.xls', 'Sheet1', usecols=[0, 2, 3])
Element order is ignored, so usecols=[0, 1]
is the same as [1, 0]
.
Parsing Dates¶
Datetime-like values are normally automatically converted to the
appropriate dtype when reading the excel file. But if you have a column
of strings that look like dates (but are not actually formatted as
dates in excel), you can use the parse_dates
keyword to parse those
strings to datetimes:
read_excel('path_to_file.xls', 'Sheet1', parse_dates=['date_strings'])
Cell Converters¶
It is possible to transform the contents of Excel cells via the
converters
option. For instance, to convert a column to boolean:
read_excel('path_to_file.xls', 'Sheet1', converters={'MyBools': bool})
This options handles missing values and treats exceptions in the
converters as missing data. Transformations are applied cell by cell
rather than to the column as a whole, so the array dtype is not
guaranteed. For instance, a column of integers with missing values
cannot be transformed to an array with integer dtype, because NaN is
strictly a float. You can manually mask missing data to recover integer
dtype:
cfun = lambda x: int(x) if x else -1
read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun})
dtype Specifications¶
New in version 0.20.
As an alternative to converters, the type for an entire column can be
specified using the dtype keyword, which takes a dictionary mapping
column names to types. To interpret data with no type inference, use the
type str
or object
.
read_excel('path_to_file.xls', dtype={'MyInts': 'int64', 'MyText': str})
Writing Excel Files¶
Writing Excel Files to Disk¶
To write a DataFrame
object to a sheet of an Excel file, you can use
the to_excel
instance method. The arguments are largely the same as
to_csv
described above, the first argument being the name of the excel
file, and the optional second argument the name of the sheet to which
the DataFrame
should be written. For example:
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
Files with a .xls
extension will be written using xlwt
and those
with a .xlsx
extension will be written using xlsxwriter
(if
available) or openpyxl
.
The DataFrame
will be written in a way that tries to mimic the REPL
output. The index_label
will be placed in the second row instead of
the first. You can place it in the first row by setting the
merge_cells
option in to_excel()
to False
:
df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)
In order to write separate DataFrames
to separate sheets in a single
Excel file, one can pass an ExcelWriter
.
with ExcelWriter('path_to_file.xlsx') as writer:
df1.to_excel(writer, sheet_name='Sheet1')
df2.to_excel(writer, sheet_name='Sheet2')
Note
Wringing a little more performance out of read_excel
Internally, Excel
stores all numeric data as floats. Because this can produce unexpected
behavior when reading in data, pandas defaults to trying to convert
integers to floats if it doesn’t lose information (1.0 --> 1
). You can
pass convert_float=False
to disable this behavior, which may give a
slight performance improvement.
Writing Excel Files to Memory¶
Pandas supports writing Excel files to buffer-like objects such as
StringIO
or BytesIO
using ExcelWriter
.
# Safe import for either Python 2.x or 3.x
try:
from io import BytesIO
except ImportError:
from cStringIO import StringIO as BytesIO
bio = BytesIO()
# By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter(bio, engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')
# Save the workbook
writer.save()
# Seek to the beginning and read to copy the workbook to a variable in memory
bio.seek(0)
workbook = bio.read()
Note
engine
is optional but recommended. Setting the engine determines the
version of workbook produced. Setting engine='xlrd'
will produce an
Excel 2003-format workbook (xls). Using either 'openpyxl'
or
'xlsxwriter'
will produce an Excel 2007-format workbook (xlsx). If
omitted, an Excel 2007-formatted workbook is produced.
Excel writer engines¶
Pandas chooses an Excel writer via two methods:
- the
engine
keyword argument - the filename extension (via the default specified in config options)
By default, pandas uses the
for .xlsx
,
for .xlsm
, and
for .xls
files. If you have multiple engines installed, you can set
the default engine through
io.excel.xlsx.writer
and io.excel.xls.writer
. pandas will fall back
on
for .xlsx
files if
is not available.
To specify which writer you want to use, you can pass an engine keyword
argument to to_excel
and to ExcelWriter
. The built-in engines are:
-
openpyxl
: version 2.4 or higher is required -
xlsxwriter
-
xlwt
By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods.
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')
By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')
Or via pandas configuration.
from pandas import options
options.io.excel.xlsx.writer = 'xlsxwriter'df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
Style and Formatting¶
The look and feel of Excel worksheets created from pandas can be
modified using the following parameters on the DataFrame
’s to_excel
method.
-
float_format
: Format string for floating point numbers (defaultNone
). -
freeze_panes
: A tuple of two integers representing the bottommostrow and rightmost column to freeze. Each of these parameters is
one-based, so (1, 1) will freeze the first row and first column
(defaultNone
).
Clipboard¶
A handy way to grab data is to use the read_clipboard()
method, which
takes the contents of the clipboard buffer and passes them to the
read_table
method. For instance, you can copy the following text to
the clipboard (CTRL-C on many operating systems):
A B C
x 1 4 p
y 2 5 q
z 3 6 r
And then import the data directly to a DataFrame
by calling:
clipdf = pd.read_clipboard()
In[312]: clipdf
Out[312]:
A B C
x 1 4 p
y 2 5 q
z 3 6 r
The to_clipboard
method can be used to write the contents of a
DataFrame
to the clipboard. Following which you can paste the
clipboard contents into other applications (CTRL-V on many operating
systems). Here we illustrate writing a DataFrame
into clipboard and
reading it back.
In[313]: df = pd.DataFrame(randn(5, 3))
In[314]: df
Out[314]:
0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
In[315]: df.to_clipboard()
In[316]: pd.read_clipboard()
Out[316]:
0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
We can see that we got the same content back, which we had earlier
written to the clipboard.
Note
You may need to install xclip or xsel (with gtk, PyQt5, PyQt4 or qtpy)
on Linux to use these methods.
Pickling¶
All pandas objects are equipped with to_pickle
methods which use
Python’s cPickle
module to save data structures to disk using the
pickle format.
In[317]: df
Out[317]:
0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
In[318]: df.to_pickle('foo.pkl')
The read_pickle
function in the pandas
namespace can be used to load
any pickled pandas object (or any other pickled object) from file:
In[319]: pd.read_pickle('foo.pkl')
Out[319]:
0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
Warning
Loading pickled data received from untrusted sources can be unsafe.
See:
Warning
Several internal refactorings have been done while still preserving
compatibility with pickles created with older versions of pandas.
However, for such cases, pickled DataFrames
, Series
etc, must be
read with pd.read_pickle
, rather than pickle.load
.
See
and
for some examples of compatibility-breaking changes. See
for a detailed explanation.
Compressed pickle files¶
New in version 0.20.0.
read_pickle()
,
and
can read and write compressed pickle files. The compression types of
file format only supports reading and must contain only one data file to
be read.
The compression type can be an explicit parameter or be inferred from
the file extension. If ‘infer’, then use gzip
, bz2
, zip
, or xz
if filename ends in '.gz'
, '.bz2'
, '.zip'
, or '.xz'
,
respectively.
In[320]: df = pd.DataFrame({
.....: 'A': np.random.randn(1000),
.....: 'B': 'foo',
.....: 'C': pd.date_range('20130101', periods=1000, freq='s')})
.....:
In[321]: df
Out[321]:
A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
.. ... ... ...
993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35
996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39
[1000 rows x 3 columns]
Using an explicit compression type:
In[322]: df.to_pickle("data.pkl.compress", compression="gzip")
In[323]: rt = pd.read_pickle("data.pkl.compress", compression="gzip")
In[324]: rt
Out[324]:
A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
.. ... ... ...
993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35
996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39
[1000 rows x 3 columns]
Inferring compression type from the extension:
In[325]: df.to_pickle("data.pkl.xz", compression="infer")
In[326]: rt = pd.read_pickle("data.pkl.xz", compression="infer")
In[327]: rt
Out[327]:
A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
.. ... ... ...
993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35
996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39
[1000 rows x 3 columns]
The default is to ‘infer’:
In[328]: df.to_pickle("data.pkl.gz")
In[329]: rt = pd.read_pickle("data.pkl.gz")
In[330]: rt
Out[330]:
A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
.. ... ... ...
993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35
996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39
[1000 rows x 3 columns]
In[331]: df["A"].to_pickle("s1.pkl.bz2")
In[332]: rt = pd.read_pickle("s1.pkl.bz2")
In[333]: rt
Out[333]:
0 0.478412
1 -0.783748
2 1.403558
3 -0.539282
4 -1.651012
5 0.692072
6 1.022171
...
993 -1.613932
994 1.088104
995 -0.632963
996 -0.585314
997 -0.275038
998 -0.937512
999 0.632369
Name: A, Length: 1000, dtype: float64
msgpack¶
pandas supports the msgpack
format for object serialization. This is a
lightweight portable binary format, similar to binary JSON, that is
highly space efficient, and provides good performance both on the
writing (serialization), and reading (deserialization).
Warning
This is a very new feature of pandas. We intend to provide certain
optimizations in the io of the msgpack
data. Since this is marked as
an EXPERIMENTAL LIBRARY, the storage format may not be stable until a
future release.
In[334]: df = pd.DataFrame(np.random.rand(5, 2), columns=list('AB'))
In[335]: df.to_msgpack('foo.msg')
In[336]: pd.read_msgpack('foo.msg')
Out[336]:
A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359
In[337]: s = pd.Series(np.random.rand(5), index=pd.date_range('20130101', periods=5))
You can pass a list of objects and you will receive them back on
deserialization.
In[338]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1, 2, 3]), s)
In[339]: pd.read_msgpack('foo.msg')
Out[339]:
[ A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359, 'foo', array([1, 2, 3]), 2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64]
You can pass iterator=True
to iterate over the unpacked results:
In[340]: for o in pd.read_msgpack('foo.msg', iterator=True):
.....: print(o)
.....:
A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359
foo
[1 2 3]
2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64
You can pass append=True
to the writer to append to an existing pack:
In[341]: df.to_msgpack('foo.msg', append=True)
In[342]: pd.read_msgpack('foo.msg')
Out[342]:
[ A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359, 'foo', array([1, 2, 3]), 2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64, A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359]
Unlike other io methods, to_msgpack
is available on both a per-object
basis, df.to_msgpack()
and using the top-level pd.to_msgpack(...)
where you can pack arbitrary collections of Python lists, dicts,
scalars, while intermixing pandas objects.
In[343]: pd.to_msgpack('foo2.msg', {'dict': [{ 'df': df }, {'string': 'foo'},
.....: {'scalar': 1.}, {'s': s}]})
.....:
In[344]: pd.read_msgpack('foo2.msg')
Out[344]:
{'dict': ({'df': A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359},
{'string': 'foo'},
{'scalar': 1.0},
{'s': 2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64})}
Read/Write API¶
Msgpacks can also be read from and written to strings.
In[345]: df.to_msgpack()
Out[345]: b'\x84\xa3typ\xadblock_manager\xa5klass\xa9DataFrame\xa4axes\x92\x86\xa3typ\xa5index\xa5klass\xa5Index\xa4name\xc0\xa5dtype\xa6object\xa4data\x92\xa1A\xa1B\xa8compress\xc0\x86\xa3typ\xabrange_index\xa5klass\xaaRangeIndex\xa4name\xc0\xa5start\x00\xa4stop\x05\xa4step\x01\xa6blocks\x91\x86\xa4locs\x86\xa3typ\xa7ndarray\xa5shape\x91\x02\xa4ndim\x01\xa5dtype\xa5int64\xa4data\xd8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xa8compress\xc0\xa6values\xc7P\x00<\xfd\xd2f\xcf\xdc\xc5?0\x15\xebN\xd9\xd2\xea?,\x9c\x16A\xa2@\xe5?\xd8/\xdd\xf4"\xc6\xdc?\x11\x1e\x97\x1b\xcdy\xef?&\x1e<\xee\xd6\xa6\xec?p\xd3;\xb2N\xed\xaa?h\xcb\xb1\xbdB\x8b\xd2?\xaf4\x01r"\xe8\xeb?)G6\xd9\xc9\xd1\xe7?\xa5shape\x92\x02\x05\xa5dtype\xa7float64\xa5klass\xaaFloatBlock\xa8compress\xc0'
Furthermore you can concatenate the strings to produce a list of the
original objects.
In[346]: pd.read_msgpack(df.to_msgpack() + s.to_msgpack())
Out[346]:
[ A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359, 2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64]
HDF5 (PyTables)¶
HDFStore
is a dict-like object which reads and writes pandas using the
high performance HDF5 format using the excellent
library. See the
for some advanced strategies
Warning
pandas requires PyTables
>= 3.0.0. There is a indexing bug in
PyTables
< 3.2 which may appear when querying stores using an
index. If you see a subset of results being returned, upgrade to
PyTables
>= 3.2. Stores created previously will need to be
rewritten using the updated version.
In[347]: store = pd.HDFStore('store.h5')
In[348]: print(store)
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
Objects can be written to the file just like adding key-value pairs to a
dict:
In[349]: np.random.seed(1234)
In[350]: index = pd.date_range('1/1/2000', periods=8)
In[351]: s = pd.Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In[352]: df = pd.DataFrame(randn(8, 3), index=index,
.....: columns=['A', 'B', 'C'])
.....:
In[353]: wp = pd.Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
.....: major_axis=pd.date_range('1/1/2000', periods=5),
.....: minor_axis=['A', 'B', 'C', 'D'])
.....:
# store.put('s', s) is an equivalent method
In[354]: store['s'] = s
In[355]: store['df'] = df
In[356]: store['wp'] = wp
# the type of stored data
In[357]: store.root.wp._v_attrs.pandas_type
Out[357]: 'wide'
In[358]: store
Out[358]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
In a current or later Python session, you can retrieve stored objects:
# store.get('df') is an equivalent method
In[359]: store['df']
Out[359]:
A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109
# dotted (attribute) access provides get as well
In[360]: store.df
Out[360]:
A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109
Deletion of the object specified by the key:
# store.remove('wp') is an equivalent method
In[361]: del store['wp']
In[362]: store
Out[362]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
Closing a Store and using a context manager:
In[363]: store.close()
In[364]: store
Out[364]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
In[365]: store.is_open
Out[365]: False
# Working with, and automatically closing the store using a context manager
In[366]: with pd.HDFStore('store.h5') as store:
.....: store.keys()
.....:
Read/Write API¶
HDFStore
supports an top-level API using read_hdf
for reading and
to_hdf
for writing, similar to how read_csv
and to_csv
work.
In[367]: df_tl = pd.DataFrame(dict(A=list(range(5)), B=list(range(5))))
In[368]: df_tl.to_hdf('store_tl.h5','table', append=True)
In[369]: pd.read_hdf('store_tl.h5', 'table', where=['index>2'])
Out[369]:
A B
3 3 3
4 4 4
HDFStore will by default not drop rows that are all missing. This
behavior can be changed by setting dropna=True
.
In[370]: df_with_missing = pd.DataFrame({'col1': [0, np.nan, 2],
.....: 'col2': [1, np.nan, np.nan]})
.....:
In[371]: df_with_missing
Out[371]:
col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN
In[372]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
.....: format='table', mode='w')
.....:
In[373]: pd.read_hdf('file.h5', 'df_with_missing')
Out[373]:
col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN
In[374]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
.....: format='table', mode='w', dropna=True)
.....:
In[375]: pd.read_hdf('file.h5', 'df_with_missing')
Out[375]:
col1 col2
0 0.0 1.0
2 2.0 NaN
This is also true for the major axis of a Panel
:
In[376]: matrix = [[[np.nan, np.nan, np.nan], [1, np.nan, np.nan]],
.....: [[np.nan, np.nan, np.nan], [np.nan, 5, 6]],
.....: [[np.nan, np.nan, np.nan], [np.nan, 3, np.nan]]]
.....:
In[377]: panel_with_major_axis_all_missing=pd.Panel(matrix,
.....: items=['Item1', 'Item2', 'Item3'],
.....: major_axis=[1, 2],
.....: minor_axis=['A', 'B', 'C'])
.....:
In[378]: panel_with_major_axis_all_missing
Out[378]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 2 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item3
Major_axis axis: 1 to 2
Minor_axis axis: A to C
In[379]: panel_with_major_axis_all_missing.to_hdf('file.h5', 'panel',
.....: dropna=True,
.....: format='table',
.....: mode='w')
.....:
In[380]: reloaded = pd.read_hdf('file.h5', 'panel')
In[381]: reloaded
Out[381]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 1 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item3
Major_axis axis: 2 to 2
Minor_axis axis: A to C
Fixed Format¶
The examples above show storing using put
, which write the HDF5 to
PyTables
in a fixed array format, called the fixed
format. These
types of stores are not appendable once written (though you can
simply remove them and rewrite). Nor are they queryable; they must
be retrieved in their entirety. They also do not support dataframes with
non-unique column names. The fixed
format stores offer very fast
writing and slightly faster reading than table
stores. This format is
specified by default when using put
or to_hdf
or by format='fixed'
or format='f'
.
Warning
A fixed
format will raise a TypeError
if you try to retrieve using a
where
:
pd.DataFrame(randn(10, 2)).to_hdf('test_fixed.h5', 'df')
pd.read_hdf('test_fixed.h5', 'df', where='index>5')
TypeError: cannot pass a where specification when reading a fixed format.
this store must be selected in its entirety
Table Format¶
format. Conceptually a table
is shaped very much like a DataFrame,
with rows and columns. A table
may be appended to in the same or other
sessions. In addition, delete and query type operations are supported.
This format is specified by format='table'
or format='t'
to append
or put
or to_hdf
.
This format can be set as an option as well
pd.set_option('io.hdf.default_format','table')
to enable
put/append/to_hdf
to by default store in the table
format.
In[382]: store = pd.HDFStore('store.h5')
In[383]: df1 = df[0:4]
In[384]: df2 = df[4:]
# append data (creates a table automatically)
In[385]: store.append('df', df1)
In[386]: store.append('df', df2)
In[387]: store
Out[387]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
# select the entire object
In[388]: store.select('df')
Out[388]:
A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109
# the type of stored data
In[389]: store.root.df._v_attrs.pandas_type
Out[389]: 'frame_table'
Note
You can also create a table
by passing format='table'
or
format='t'
to a put
operation.
Hierarchical Keys¶
Keys to a store can be specified as a string. These can be in a
hierarchical path-name like format (e.g. foo/bar/bah
), which will
generate a hierarchy of sub-stores (or Groups
in PyTables parlance).
Keys can be specified with out the leading ‘/’ and are always
absolute (e.g. ‘foo’ refers to ‘/foo’). Removal operations can remove
everything in the sub-store and below, so be careful.
In[390]: store.put('foo/bar/bah', df)
In[391]: store.append('food/orange', df)
In[392]: store.append('food/apple', df)
In[393]: store
Out[393]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
# a list of keys are returned
In[394]: store.keys()
Out[394]: ['/df', '/food/apple', '/food/orange', '/foo/bar/bah']
# remove all nodes under this level
In[395]: store.remove('food')
In[396]: store
Out[396]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
Warning
Hierarchical keys cannot be retrieved as dotted (attribute) access as
described above for items stored under the root node.
In[8]: store.foo.bar.bah
AttributeError: 'HDFStore' object has no attribute 'foo'
# you can directly access the actual PyTables node but using the root node
In[9]: store.root.foo.bar.bah
Out[9]:
/foo/bar/bah (Group) ''
children := ['block0_items' (Array), 'block0_values' (Array), 'axis0' (Array), 'axis1' (Array)]
Instead, use explicit string based keys:
In[397]: store['foo/bar/bah']
Out[397]:
A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109
Storing Types¶
Storing Mixed Types in a Table¶
Storing mixed-dtype data is supported. Strings are stored as a
fixed-width using the maximum size of the appended column. Subsequent
attempts at appending longer strings will raise a ValueError
.
Passing min_itemsize={`values`: size}
as a parameter to append
will set a larger minimum for the string columns. Storing
floats, strings, ints, bools, datetime64
are currently supported. For
string columns, passing nan_rep = 'nan'
to append will change the
default nan representation on disk (which converts to/from np.nan), this
defaults to nan.
In[398]: df_mixed = pd.DataFrame({'A': randn(8),
.....: 'B': randn(8),
.....: 'C': np.array(randn(8), dtype='float32'),
.....: 'string':'string',
.....: 'int': 1,
.....: 'bool': True,
.....: 'datetime64': pd.Timestamp('20010102')},
.....: index=list(range(8)))
.....:
In[399]: df_mixed.loc[df_mixed.index[3:5], ['A', 'B', 'string', 'datetime64']] = np.nan
In[400]: store.append('df_mixed', df_mixed, min_itemsize = {'values': 50})
In[401]: df_mixed1 = store.select('df_mixed')
In[402]: df_mixed1
Out[402]:
A B C string int bool datetime64
0 0.704721 -1.152659 -0.430096 string 1 True 2001-01-02
1 -0.785435 0.631979 0.767369 string 1 True 2001-01-02
2 0.462060 0.039513 0.984920 string 1 True 2001-01-02
3 NaN NaN 0.270836 NaN 1 True NaT
4 NaN NaN 1.391986 NaN 1 True NaT
5 -0.926254 1.321106 0.079842 string 1 True 2001-01-02
6 2.007843 0.152631 -0.399965 string 1 True 2001-01-02
7 0.226963 0.164530 -1.027851 string 1 True 2001-01-02
In[403]: df_mixed1.get_dtype_counts()
Out[403]:
float64 2
float32 1
object 1
int64 1
bool 1
datetime64[ns] 1
dtype: int64
# we have provided a minimum string column size
In[404]: store.root.df_mixed.table
Out[404]:
/df_mixed/table (Table(8,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1),
"values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2),
"values_block_2": Int64Col(shape=(1,), dflt=0, pos=3),
"values_block_3": Int64Col(shape=(1,), dflt=0, pos=4),
"values_block_4": BoolCol(shape=(1,), dflt=False, pos=5),
"values_block_5": StringCol(itemsize=50, shape=(1,), dflt=b'', pos=6)}
byteorder := 'little'
chunkshape := (689,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False}
Storing Multi-Index DataFrames¶
Storing multi-index DataFrames
as tables is very similar to
storing/selecting from homogeneous index DataFrames
.
In[405]: index = pd.MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
.....: ['one', 'two', 'three']],
.....: labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
.....: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
.....: names=['foo', 'bar'])
.....:
In[406]: df_mi = pd.DataFrame(np.random.randn(10, 3), index=index,
.....: columns=['A', 'B', 'C'])
.....:
In[407]: df_mi
Out[407]:
A B C
foo bar
foo one -0.584718 0.816594 -0.081947
two -0.344766 0.528288 -1.068989
three -0.511881 0.291205 0.566534
bar one 0.503592 0.285296 0.484288
two 1.363482 -0.781105 -0.468018
baz two 1.224574 -1.281108 0.875476
three -1.710715 -0.450765 0.749164
qux one -0.203933 -0.182175 0.680656
two -1.818499 0.047072 0.394844
three -0.248432 -0.617707 -0.682884
In[408]: store.append('df_mi', df_mi)
In[409]: store.select('df_mi')
Out[409]:
A B C
foo bar
foo one -0.584718 0.816594 -0.081947
two -0.344766 0.528288 -1.068989
three -0.511881 0.291205 0.566534
bar one 0.503592 0.285296 0.484288
two 1.363482 -0.781105 -0.468018
baz two 1.224574 -1.281108 0.875476
three -1.710715 -0.450765 0.749164
qux one -0.203933 -0.182175 0.680656
two -1.818499 0.047072 0.394844
three -0.248432 -0.617707 -0.682884
# the levels are automatically included as data columns
In[410]: store.select('df_mi', 'foo=bar')
Out[410]:
A B C
foo bar
bar one 0.503592 0.285296 0.484288
two 1.363482 -0.781105 -0.468018
Querying¶
Querying a Table¶
select
and delete
operations have an optional criterion that can be
specified to select/delete only a subset of the data. This allows one to
have a very large on-disk table and retrieve only a portion of the data.
A query is specified using the Term
class under the hood, as a boolean
expression.
-
index
andcolumns
are supported indexers of aDataFrames
. -
major_axis
,minor_axis
, anditems
are supported indexers ofthe Panel.
-
if
data_columns
are specified, these can be used as additionalindexers.
Valid comparison operators are:
Valid boolean expressions are combined with:
-
|
: or -
&
: and -
(
and)
: for grouping
These rules are similar to how boolean expressions are used in pandas
for indexing.
Note
-
=
will be automatically expanded to the comparison operator==
-
~
is the not operator, but can only be used in very limitedcircumstances
- If a list/tuple of expressions is passed they will be combined via
The following are valid expressions:
-
'index >= date'
-
"columns = ['A', 'D']"
-
"columns in ['A', 'D']"
-
'columns = A'
-
'columns == A'
-
"~(columns = ['A', 'B'])"
-
'index > df.index[3] & string = "bar"'
-
'(index > df.index[3] & index <= df.index[6]) | string = "bar"'
-
"ts >= Timestamp('2012-02-01')"
-
"major_axis>=20130101"
The indexers
are on the left-hand side of the sub-expression:
The right-hand side of the sub-expression (after a comparison operator)
can be:
- functions that will be evaluated, e.g.
Timestamp('2012-02-01')
- strings, e.g.
"bar"
- date-like, e.g.
20130101
, or"20130101"
- lists, e.g.
"['A', 'B']"
- variables that are defined in the local names space, e.g.
date
Note
Passing a string to a query by interpolating it into the query
expression is not recommended. Simply assign the string of interest to a
variable and use that variable in an expression. For example, do this
string = "HolyMoly'"
store.select('df', 'index == string')
instead of this
string = "HolyMoly'"
store.select('df', 'index == %s' % string)
The latter will not work and will raise a SyntaxError
.Note that
there’s a single quote followed by a double quote in the string
variable.
If you must interpolate, use the '%r'
format specifier
store.select('df', 'index == %r' % string)
which will quote string
.
Here are some examples:
In[411]: dfq = pd.DataFrame(randn(10, 4), columns=list('ABCD'),
.....: index=pd.date_range('20130101', periods=10))
.....:
In[412]: store.append('dfq', dfq, format='table', data_columns=True)
Use boolean expressions, with in-line function evaluation.
In[413]: store.select('dfq', "index>pd.Timestamp('20130104') & columns=['A', 'B']")
Out[413]:
A B
2013-01-05 1.210384 0.797435
2013-01-06 -0.850346 1.176812
2013-01-07 0.984188 -0.121728
2013-01-08 0.796595 -0.474021
2013-01-09 -0.804834 -2.123620
2013-01-10 0.334198 0.536784
Use and inline column reference
In[414]: store.select('dfq', where="A>0 or C>0")
Out[414]:
A B C D
2013-01-01 0.436258 -1.703013 0.393711 -0.479324
2013-01-02 -0.299016 0.694103 0.678630 0.239556
2013-01-03 0.151227 0.816127 1.893534 0.639633
2013-01-04 -0.962029 -2.085266 1.930247 -1.735349
2013-01-05 1.210384 0.797435 -0.379811 0.702562
2013-01-07 0.984188 -0.121728 2.365769 0.496143
2013-01-08 0.796595 -0.474021 -0.056696 1.357797
2013-01-10 0.334198 0.536784 -0.743830 -0.320204
Works with a Panel as well.
In[415]: store.append('wp', wp)
In[416]: store
Out[416]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
In[417]: store.select('wp', "major_axis>pd.Timestamp('20000102') & minor_axis=['A', 'B']")
Out[417]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B
The columns
keyword can be supplied to select a list of columns to be
returned, this is equivalent to passing a
'columns=list_of_columns_to_filter'
:
In[418]: store.select('df', "columns=['A', 'B']")
Out[418]:
A B
2000-01-01 0.887163 0.859588
2000-01-02 0.015696 -2.242685
2000-01-03 0.991946 0.953324
2000-01-04 -0.334077 0.002118
2000-01-05 0.289092 1.321158
2000-01-06 -0.202646 -0.655969
2000-01-07 0.553439 1.318152
2000-01-08 0.675554 -1.817027
start
and stop
parameters can be specified to limit the total search
space. These are in terms of the total number of rows in a table.
# this is effectively what the storage of a Panel looks like
In[419]: wp.to_frame()
Out[419]:
Item1 Item2
major minor
2000-01-01 A 1.058969 0.215269
B -0.397840 0.841009
C 0.337438 -1.445810
D 1.047579 -1.401973
2000-01-02 A 1.045938 -0.100918
B 0.863717 -0.548242
C -0.122092 -0.144620
... ... ...
2000-01-04 B 0.036142 0.307969
C -2.074978 -0.208499
D 0.247792 1.033801
2000-01-05 A -0.897157 -2.400454
B -0.136795 2.030604
C 0.018289 -1.142631
D 0.755414 0.211883
[20 rows x 2 columns]
# limiting the search
In[420]: store.select('wp', "major_axis>20000102 & minor_axis=['A', 'B']",
.....: start=0, stop=10)
.....:
Out[420]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 1 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to B
Note
select
will raise a ValueError
if the query expression has an
unknown variable reference. Usually this means that you are trying to
select on a column that is not a data_column.
select
will raise a SyntaxError
if the query expression is not
valid.
Using timedelta64[ns]¶
You can store and query using the timedelta64[ns]
type. Terms can be
specified in the format: <float>(<unit>)
, where float may be signed
(and fractional), and unit can be D,s,ms,us,ns
for the timedelta.
Here’s an example:
In[421]: from datetime import timedelta
In[422]: dftd = pd.DataFrame(dict(A = pd.Timestamp('20130101'), B = [ pd.Timestamp('20130101') + timedelta(days=i, seconds=10) for i in range(10) ]))
In[423]: dftd['C'] = dftd['A'] - dftd['B']
In[424]: dftd
Out[424]:
A B C
0 2013-01-01 2013-01-01 00:00:10 -1 days +23:59:50
1 2013-01-01 2013-01-02 00:00:10 -2 days +23:59:50
2 2013-01-01 2013-01-03 00:00:10 -3 days +23:59:50
3 2013-01-01 2013-01-04 00:00:10 -4 days +23:59:50
4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50
In[425]: store.append('dftd', dftd, data_columns=True)
In[426]: store.select('dftd', "C<'-3.5D'")
Out[426]:
A B C
4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50
Indexing¶
You can create/modify an index for a table with create_table_index
after data is already in the table (after and append/put
operation).
Creating a table index is highly encouraged. This will speed your
queries a great deal when you use a select
with the indexed dimension
as the where
.
Note
Indexes are automagically created on the indexables and any data columns
you specify. This behavior can be turned off by passing index=False
to
append
.
# we have automagically already created an index (in the first section)
In[427]: i = store.root.df.table.cols.index.index
In[428]: i.optlevel, i.kind
Out[428]: (6, 'medium')
# change an index by passing new parameters
In[429]: store.create_table_index('df', optlevel=9, kind='full')
In[430]: i = store.root.df.table.cols.index.index
In[431]: i.optlevel, i.kind
Out[431]: (9, 'full')
Oftentimes when appending large amounts of data to a store, it is useful
to turn off index creation for each append, then recreate at the end.
In[432]: df_1 = pd.DataFrame(randn(10, 2), columns=list('AB'))
In[433]: df_2 = pd.DataFrame(randn(10, 2), columns=list('AB'))
In[434]: st = pd.HDFStore('appends.h5', mode='w')
In[435]: st.append('df', df_1, data_columns=['B'], index=False)
In[436]: st.append('df', df_2, data_columns=['B'], index=False)
In[437]: st.get_storer('df').table
Out[437]:
/df/table (Table(20,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
"B": Float64Col(shape=(), dflt=0.0, pos=2)}
byteorder := 'little'
chunkshape := (2730,)
Then create the index when finished appending.
In[438]: st.create_table_index('df', columns=['B'], optlevel=9, kind='full')
In[439]: st.get_storer('df').table
Out[439]:
/df/table (Table(20,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
"B": Float64Col(shape=(), dflt=0.0, pos=2)}
byteorder := 'little'
chunkshape := (2730,)
autoindex := True
colindexes := {
"B": Index(9, full, shuffle, zlib(1)).is_csi=True}
In[440]: st.close()
See
for how to create a completely-sorted-index (CSI) on an existing store.
Query via Data Columns¶
You can designate (and index) certain columns that you want to be able
to perform queries (other than the indexable columns, which you can
always query). For instance say you want to perform this common
operation, on-disk, and return just the frame that matches this query.
You can specify data_columns = True
to force all columns to be
data_columns
.
In[441]: df_dc = df.copy()
In[442]: df_dc['string'] = 'foo'
In[443]: df_dc.loc[df_dc.index[4: 6], 'string'] = np.nan
In[444]: df_dc.loc[df_dc.index[7: 9], 'string'] = 'bar'
In[445]: df_dc['string2'] = 'cool'
In[446]: df_dc.loc[df_dc.index[1: 3], ['B', 'C']] = 1.0
In[447]: df_dc
Out[447]:
A B C string string2
2000-01-01 0.887163 0.859588 -0.636524 foo cool
2000-01-02 0.015696 1.000000 1.000000 foo cool
2000-01-03 0.991946 1.000000 1.000000 foo cool
2000-01-04 -0.334077 0.002118 0.405453 foo cool
2000-01-05 0.289092 1.321158 -1.546906 NaN cool
2000-01-06 -0.202646 -0.655969 0.193421 NaN cool
2000-01-07 0.553439 1.318152 -0.469305 foo cool
2000-01-08 0.675554 -1.817027 -0.183109 bar cool
# on-disk operations
In[448]: store.append('df_dc', df_dc, data_columns = ['B', 'C', 'string', 'string2'])
In[449]: store.select('df_dc', where='B > 0')
Out[449]:
A B C string string2
2000-01-01 0.887163 0.859588 -0.636524 foo cool
2000-01-02 0.015696 1.000000 1.000000 foo cool
2000-01-03 0.991946 1.000000 1.000000 foo cool
2000-01-04 -0.334077 0.002118 0.405453 foo cool
2000-01-05 0.289092 1.321158 -1.546906 NaN cool
2000-01-07 0.553439 1.318152 -0.469305 foo cool
# getting creative
In[450]: store.select('df_dc', 'B > 0 & C > 0 & string == foo')
Out[450]:
A B C string string2
2000-01-02 0.015696 1.000000 1.000000 foo cool
2000-01-03 0.991946 1.000000 1.000000 foo cool
2000-01-04 -0.334077 0.002118 0.405453 foo cool
# this is in-memory version of this type of selection
In[451]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')]
Out[451]:
A B C string string2
2000-01-02 0.015696 1.000000 1.000000 foo cool
2000-01-03 0.991946 1.000000 1.000000 foo cool
2000-01-04 -0.334077 0.002118 0.405453 foo cool
# we have automagically created this index and the B/C/string/string2
# columns are stored separately as ``PyTables`` columns
In[452]: store.root.df_dc.table
Out[452]:
/df_dc/table (Table(8,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
"B": Float64Col(shape=(), dflt=0.0, pos=2),
"C": Float64Col(shape=(), dflt=0.0, pos=3),
"string": StringCol(itemsize=3, shape=(), dflt=b'', pos=4),
"string2": StringCol(itemsize=4, shape=(), dflt=b'', pos=5)}
byteorder := 'little'
chunkshape := (1680,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"B": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"string": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"string2": Index(6, medium, shuffle, zlib(1)).is_csi=False}
There is some performance degradation by making lots of columns into
data columns, so it is up to the user to designate these. In addition,
you cannot change data columns (nor indexables) after the first
append/put operation (Of course you can simply read in the data and
create a new table!).
Iterator¶
You can pass iterator=True
or chunksize=number_in_a_chunk
to
select
and select_as_multiple
to return an iterator on the results.
The default is 50,000 rows returned in a chunk.
In[453]: for df in store.select('df', chunksize=3):
.....: print(df)
.....:
A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
A B C
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
A B C
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109
Note
You can also use the iterator with read_hdf
which will open, then
automatically close the store when finished iterating.
for df in pd.read_hdf('store.h5','df', chunksize=3):
print(df)
Note, that the chunksize keyword applies to the source rows. So if
you are doing a query, then the chunksize will subdivide the total rows
in the table and the query applied, returning an iterator on potentially
unequal sized chunks.
Here is a recipe for generating a query and using it to create equal
sized return chunks.
In[454]: dfeq = pd.DataFrame({'number': np.arange(1, 11)})
In[455]: dfeq
Out[455]:
number
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
In[456]: store.append('dfeq', dfeq, data_columns=['number'])
In[457]: def chunks(l, n):
.....: return [l[i: i+n] for i in range(0, len(l), n)]
.....:
In[458]: evens = [2, 4, 6, 8, 10]
In[459]: coordinates = store.select_as_coordinates('dfeq', 'number=evens')
In[460]: for c in chunks(coordinates, 2):
.....: print(store.select('dfeq', where=c))
.....:
number
1 2
3 4
number
5 6
7 8
number
9 10
Advanced Queries¶
Select a Single Column¶
To retrieve a single indexable or data column, use the method
select_column
. This will, for example, enable you to get the index
very quickly. These return a Series
of the result, indexed by the row
number. These do not currently accept the where
selector.
In[461]: store.select_column('df_dc', 'index')
Out[461]:
0 2000-01-01
1 2000-01-02
2 2000-01-03
3 2000-01-04
4 2000-01-05
5 2000-01-06
6 2000-01-07
7 2000-01-08
Name: index, dtype: datetime64[ns]
In[462]: store.select_column('df_dc', 'string')
Out[462]:
0 foo
1 foo
2 foo
3 foo
4 NaN
5 NaN
6 foo
7 bar
Name: string, dtype: object
Selecting coordinates¶
Sometimes you want to get the coordinates (a.k.a the index locations) of
your query. This returns an Int64Index
of the resulting locations.
These coordinates can also be passed to subsequent where
operations.
In[463]: df_coord = pd.DataFrame(np.random.randn(1000, 2),
.....: index=pd.date_range('20000101', periods=1000))
.....:
In[464]: store.append('df_coord', df_coord)
In[465]: c = store.select_as_coordinates('df_coord', 'index > 20020101')
In[466]: c
Out[466]:
Int64Index([732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
...
990, 991, 992, 993, 994, 995, 996, 997, 998, 999],
dtype='int64', length=268)
In[467]: store.select('df_coord', where=c)
Out[467]:
0 1
2002-01-02 -0.178266 -0.064638
2002-01-03 -1.204956 -3.880898
2002-01-04 0.974470 0.415160
2002-01-05 1.751967 0.485011
2002-01-06 -0.170894 0.748870
2002-01-07 0.629793 0.811053
2002-01-08 2.133776 0.238459
... ... ...
2002-09-20 -0.181434 0.612399
2002-09-21 -0.763324 -0.354962
2002-09-22 -0.261776 0.812126
2002-09-23 0.482615 -0.886512
2002-09-24 -0.037757 -0.562953
2002-09-25 0.897706 0.383232
2002-09-26 -1.324806 1.139269
[268 rows x 2 columns]
Selecting using a where mask¶
Sometime your query can involve creating a list of rows to select.
Usually this mask
would be a resulting index
from an indexing
operation. This example selects the months of a datetimeindex which are
5.
In[468]: df_mask = pd.DataFrame(np.random.randn(1000, 2),
.....: index=pd.date_range('20000101', periods=1000))
.....:
In[469]: store.append('df_mask', df_mask)
In[470]: c = store.select_column('df_mask', 'index')
In[471]: where = c[pd.DatetimeIndex(c).month == 5].index
In[472]: store.select('df_mask', where=where)
Out[472]:
0 1
2000-05-01 -1.006245 -0.616759
2000-05-02 0.218940 0.717838
2000-05-03 0.013333 1.348060
2000-05-04 0.662176 -1.050645
2000-05-05 -1.034870 -0.243242
2000-05-06 -0.753366 -1.454329
2000-05-07 -1.022920 -0.476989
... ... ...
2002-05-25 -0.509090 -0.389376
2002-05-26 0.150674 1.164337
2002-05-27 -0.332944 0.115181
2002-05-28 -1.048127 -0.605733
2002-05-29 1.418754 -0.442835
2002-05-30 -0.433200 0.835001
2002-05-31 -1.041278 1.401811
[93 rows x 2 columns]
Storer Object¶
If you want to inspect the stored object, retrieve via get_storer
. You
could use this programmatically to say get the number of rows in an
object.
In[473]: store.get_storer('df_dc').nrows
Out[473]: 8
Multiple Table Queries¶
The methods append_to_multiple
and select_as_multiple
can perform
appending/selecting from multiple tables at once. The idea is to have
one table (call it the selector table) that you index most/all of the
columns, and perform your queries. The other table(s) are data tables
with an index matching the selector table’s index. You can then perform
a very fast query on the selector table, yet get lots of data back. This
method is similar to having a very wide table, but enables more
efficient queries.
The append_to_multiple
method splits a given single DataFrame into
multiple tables according to d
, a dictionary that maps the table names
to a list of ‘columns’ you want in that table. If None is used in place
of a list, that table will have the remaining unspecified columns of the
given DataFrame. The argument selector
defines which table is the
selector table (which you can make queries from). The argument dropna
will drop rows from the input DataFrame
to ensure tables are
synchronized. This means that if a row for one of the tables being
written to is entirely np.NaN
, that row will be dropped from all
tables.
If dropna
is False, THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE
TABLES. Remember that entirely np.Nan
rows are not written to the
HDFStore, so if you choose to call dropna=False
, some tables may have
more rows than others, and therefore select_as_multiple
may not work
or it may return unexpected results.
In[474]: df_mt = pd.DataFrame(randn(8, 6), index=pd.date_range('1/1/2000', periods=8),
.....: columns=['A', 'B', 'C', 'D', 'E', 'F'])
.....:
In[475]: df_mt['foo'] = 'bar'
In[476]: df_mt.loc[df_mt.index[1], ('A', 'B')] = np.nan
# you can also create the tables individually
In[477]: store.append_to_multiple({'df1_mt': ['A', 'B'], 'df2_mt': None },
.....: df_mt, selector='df1_mt')
.....:
In[478]: store
Out[478]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
# individual tables were created
In[479]: store.select('df1_mt')
Out[479]:
A B
2000-01-01 0.714697 0.318215
2000-01-02 NaN NaN
2000-01-03 -0.086919 0.416905
2000-01-04 0.489131 -0.253340
2000-01-05 -0.382952 -0.397373
2000-01-06 0.538116 0.226388
2000-01-07 -2.073479 -0.115926
2000-01-08 -0.695400 0.402493
In[480]: store.select('df2_mt')
Out[480]:
C D E F foo
2000-01-01 0.607460 0.790907 0.852225 0.096696 bar
2000-01-02 0.811031 -0.356817 1.047085 0.664705 bar
2000-01-03 -0.764381 -0.287229 -0.089351 -1.035115 bar
2000-01-04 -1.948100 -0.116556 0.800597 -0.796154 bar
2000-01-05 -0.717627 0.156995 -0.344718 -0.171208 bar
2000-01-06 1.541729 0.205256 1.998065 0.953591 bar
2000-01-07 1.391070 0.303013 1.093347 -0.101000 bar
2000-01-08 -1.507639 0.089575 0.658822 -1.037627 bar
# as a multiple
In[481]: store.select_as_multiple(['df1_mt', 'df2_mt'], where=['A>0', 'B>0'],
.....: selector = 'df1_mt')
.....:
Out[481]:
A B C D E F foo
2000-01-01 0.714697 0.318215 0.607460 0.790907 0.852225 0.096696 bar
2000-01-06 0.538116 0.226388 1.541729 0.205256 1.998065 0.953591 bar
Delete from a Table¶
You can delete from a table selectively by specifying a where
. In
deleting rows, it is important to understand the PyTables
deletes rows
by erasing the rows, then moving the following data. Thus deleting
can potentially be a very expensive operation depending on the
orientation of your data. This is especially true in higher dimensional
objects (Panel
and Panel4D
). To get optimal performance, it’s
worthwhile to have the dimension you are deleting be the first of the
indexables
.
Data is ordered (on the disk) in terms of the indexables
. Here’s a
simple use case. You store panel-type data, with dates in the
major_axis
and ids in the minor_axis
. The data is then interleaved
like this:
- date_1 - id_1 - id_2 - . - id_n
- date_2 - id_1 - . - id_n
It should be clear that a delete operation on the major_axis
will be
fairly quick, as one chunk is removed, then the following data moved. On
the other hand a delete operation on the minor_axis
will be very
expensive. In this case it would almost certainly be faster to rewrite
the table using a where
that selects all but the missing data.
# returns the number of rows deleted
In[482]: store.remove('wp', 'major_axis > 20000102' )
Out[482]: 12
In[483]: store.select('wp')
Out[483]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-02 00:00:00
Minor_axis axis: A to D
Warning
Please note that HDF5 DOES NOT RECLAIM SPACE in the h5 files
automatically. Thus, repeatedly deleting (or removing nodes) and adding
again, WILL TEND TO INCREASE THE FILE SIZE.
To repack and clean the file, use
ptrepack.
Notes & Caveats¶
Compression¶
PyTables
allows the stored data to be compressed. This applies to all
kinds of stores, not just tables. Two parameters are used to control
compression: complevel
and complib
.
complevel=0
and complevel=None
disables compression and
0<complevel<10
enables compression.
specified the default library zlib
is used. A compression library
usually optimizes for either good compression rates or speed and the
results will depend on the type of data. Which type of compression to
choose depends on your specific needs and data. The list of supported
compression libraries:
- zlib: The default compression library. A classic in terms of compression, achieves good compression rates but is somewhat slow.
- lzo: Fast compression and decompression.
- bzip2: Good compression rates.
- blosc: Fast compression and decompression. New in version 0.20.2: Support for alternative blosc compressors:
- blosc:blosclz This is the default compressor for
blosc
- blosc:lz4: A compact, very popular and fast compressor.
- blosc:lz4hc: A tweaked version of LZ4, produces better compression ratios at the expense of speed.
- blosc:snappy: A popular compressor used in many places.
- blosc:zlib: A classic; somewhat slower than the previous ones, but achieving better compression ratios.
- blosc:zstd: An extremely well balanced codec; it provides the best compression ratios among the others above, and at reasonably fast speed. If
complib
is defined as something other than the listed libraries aValueError
exception is issued.
Note
If the library specified with the complib
option is missing on your
platform, compression defaults to zlib
without further ado.
Enable compression for all objects within the file:
store_compressed = pd.HDFStore('store_compressed.h5', complevel=9,
complib='blosc:blosclz')
Or on-the-fly compression (this only applies to tables) in stores where
compression is not enabled:
store.append('df', df, complib='zlib', complevel=5)
ptrepack¶
PyTables
offers better write performance when tables are compressed
after they are written, as opposed to turning on compression at the very
beginning. You can use the supplied PyTables
utility ptrepack
. In
addition, ptrepack
can change compression levels after the fact.
ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5
Furthermore ptrepack in.h5 out.h5
will repack the file to allow you
to reuse previously deleted space. Alternatively, one can simply remove
the file and write again, or use the copy
method.
Caveats¶
Warning
only supports concurrent reads (via threading or processes). If you need
reading and writing at the same time, you need to serialize these
operations in a single thread in a single process. You will corrupt your
data otherwise. See the
(GH2397)
for more information.
- If you use locks to manage write access between multiple processes,
you may want to use
before releasing write locks. For convenience you can use
store.flush(fsync=True)
to do this for you. -
Once a
table
is created its items (Panel) / columns (DataFrame)are fixed; only exactly the same columns can be appended
-
Be aware that timezones (e.g.,
pytz.timezone('US/Eastern')
) arenot necessarily equal across timezone versions. So if data is
localized to a specific timezone in the HDFStore using one version
of a timezone library and that data is updated with another version,
the data will be converted to UTC since these timezones are not
considered equal. Either use the same version of timezone library or
usetz_convert
with the updated timezone definition.
Warning
PyTables
will show a NaturalNameWarning
if a column name cannot be
used as an attribute selector. Natural identifiers contain only
letters, numbers, and underscores, and may not begin with a number.
Other identifiers cannot be used in a where
clause and are generally a
bad idea.
DataTypes¶
HDFStore
will map an object dtype to the PyTables
underlying dtype.
This means the following types are known to work:
Type | Represents missing values |
---|---|
floating : float64, float32, float16 |
np.nan |
integer : int64, int32, int8, uint64,uint32, uint8 |
|
boolean | |
datetime64[ns] |
NaT |
timedelta64[ns] |
NaT |
categorical : see the section below | |
object : strings |
np.nan |
unicode
columns are not supported, and WILL FAIL.
Categorical Data¶
You can write data that contains category
dtypes to a HDFStore
.
Queries work the same as if it was an object array. However, the
category
dtyped data is stored in a more efficient manner.
In[484]: dfcat = pd.DataFrame({'A': pd.Series(list('aabbcdba')).astype('category'),
.....: 'B': np.random.randn(8) })
.....:
In[485]: dfcat
Out[485]:
A B
0 a 0.603273
1 a 0.262554
2 b -0.979586
3 b 2.132387
4 c 0.892485
5 d 1.996474
6 b 0.231425
7 a 0.980070
In[486]: dfcat.dtypes
Out[486]:
A category
B float64
dtype: object
In[487]: cstore = pd.HDFStore('cats.h5', mode='w')
In[488]: cstore.append('dfcat', dfcat, format='table', data_columns=['A'])
In[489]: result = cstore.select('dfcat', where="A in ['b', 'c']")
In[490]: result
Out[490]:
A B
2 b -0.979586
3 b 2.132387
4 c 0.892485
6 b 0.231425
In[491]: result.dtypes
Out[491]:
A category
B float64
dtype: object
String Columns¶
The underlying implementation of HDFStore
uses a fixed column width
(itemsize) for string columns. A string column itemsize is calculated as
the maximum of the length of data (for that column) that is passed to
the HDFStore
, in the first append. Subsequent appends, may
introduce a string for a column larger than the column can hold, an
Exception will be raised (otherwise you could have a silent truncation
of these columns, leading to loss of information). In the future we may
relax this and allow a user-specified truncation to occur.
Pass min_itemsize
on the first table creation to a-priori specify the
minimum length of a particular string column. min_itemsize
can be an
integer, or a dict mapping a column name to an integer. You can pass
values
as a key to allow all indexables or data_columns to have
this min_itemsize.
Passing a min_itemsize
dict will cause all passed columns to be
created as data_columns automatically.
Note
If you are not passing any data_columns
, then the min_itemsize
will
be the maximum of the length of any string passed
In[492]: dfs = pd.DataFrame(dict(A='foo', B='bar'), index=list(range(5)))
In[493]: dfs
Out[493]:
A B
0 foo bar
1 foo bar
2 foo bar
3 foo bar
4 foo bar
# A and B have a size of 30
In[494]: store.append('dfs', dfs, min_itemsize=30)
In[495]: store.get_storer('dfs').table
Out[495]:
/dfs/table (Table(5,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": StringCol(itemsize=30, shape=(2,), dflt=b'', pos=1)}
byteorder := 'little'
chunkshape := (963,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False}
# A is created as a data_column with a size of 30
# B is size is calculated
In[496]: store.append('dfs2', dfs, min_itemsize={'A': 30})
In[497]: store.get_storer('dfs2').table
Out[497]:
/dfs2/table (Table(5,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": StringCol(itemsize=3, shape=(1,), dflt=b'', pos=1),
"A": StringCol(itemsize=30, shape=(), dflt=b'', pos=2)}
byteorder := 'little'
chunkshape := (1598,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"A": Index(6, medium, shuffle, zlib(1)).is_csi=False}
String columns will serialize a np.nan
(a missing value) with the
nan_rep
string representation. This defaults to the string value
nan
. You could inadvertently turn an actual nan
value into a missing
value.
In[498]: dfss = pd.DataFrame(dict(A=['foo', 'bar', 'nan']))
In[499]: dfss
Out[499]:
A
0 foo
1 bar
2 nan
In[500]: store.append('dfss', dfss)
In[501]: store.select('dfss')
Out[501]:
A
0 foo
1 bar
2 NaN
# here you need to specify a different nan rep
In[502]: store.append('dfss2', dfss, nan_rep='_nan_')
In[503]: store.select('dfss2')
Out[503]:
A
0 foo
1 bar
2 nan
External Compatibility¶
HDFStore
writes table
format objects in specific formats suitable
for producing loss-less round trips to pandas objects. For external
compatibility, HDFStore
can read native PyTables
format tables.
It is possible to write an HDFStore
object that can easily be imported
into R
using the rhdf5
library
(Package website).
Create a table format store like this:
In[504]: np.random.seed(1)
In[505]: df_for_r = pd.DataFrame({"first": np.random.rand(100),
.....: "second": np.random.rand(100),
.....: "class": np.random.randint(0, 2, (100, ))},
.....: index=range(100))
.....:
In[506]: df_for_r.head()
Out[506]:
first second class
0 0.417022 0.326645 0
1 0.720324 0.527058 0
2 0.000114 0.885942 1
3 0.302333 0.357270 1
4 0.146756 0.908535 1
In[507]: store_export = pd.HDFStore('export.h5')
In[508]: store_export.append('df_for_r', df_for_r, data_columns=df_dc.columns)
In[509]: store_export
Out[509]:
<class 'pandas.io.pytables.HDFStore'>
File path: export.h5
In R this file can be read into a data.frame
object using the rhdf5
library. The following example function reads the corresponding column
names and data values from the values and assembles them into a
data.frame
:
# Load values and column names for all datasets from corresponding nodes and
# insert them into one data.frame object.
library(rhdf5)
loadhdf5data <- function(h5File) {
listing <- h5ls(h5File)
# Find all data nodes, values are stored in *_values and corresponding column
# titles in *_items
data_nodes <- grep("_values", listing$name)
name_nodes <- grep("_items", listing$name)
data_paths = paste(listing$group[data_nodes], listing$name[data_nodes], sep = "/")
name_paths = paste(listing$group[name_nodes], listing$name[name_nodes], sep = "/")
columns = list()
for (idx in seq(data_paths)) {
# NOTE: matrices returned by h5read have to be transposed to obtain
# required Fortran order!
data <- data.frame(t(h5read(h5File, data_paths[idx])))
names <- t(h5read(h5File, name_paths[idx]))
entry <- data.frame(data)
colnames(entry) <- names
columns <- append(columns, entry)
}
data <- data.frame(columns)
return(data)
}
Now you can import the DataFrame
into R:
> data = loadhdf5data("transfer.hdf5")
> head(data)
first second class
1 0.4170220047 0.3266449 0
2 0.7203244934 0.5270581 0
3 0.0001143748 0.8859421 1
4 0.3023325726 0.3572698 1
5 0.1467558908 0.9085352 1
6 0.0923385948 0.6233601 1
Note
The R function lists the entire HDF5 file’s contents and assembles the
data.frame
object from all matching nodes, so use this only as a
starting point if you have stored multiple DataFrame
objects to a
single HDF5 file.
Performance¶
-
tables
format come with a writing performance penalty as comparedto
fixed
stores. The benefit is the ability to append/delete and
query (potentially very large amounts of data). Write times are
generally longer as compared with regular stores. Query times can be
quite fast, especially on an indexed axis. -
You can pass
chunksize=<int>
toappend
, specifying the writechunksize (default is 50000). This will significantly lower your
memory usage on writing. -
You can pass
expectedrows=<int>
to the firstappend
, to set theTOTAL number of expected rows that
PyTables
will expected. This
will optimize read/write performance. - Duplicate rows can be written to tables, but are filtered out in
selection (with the last items being selected; thus a table is
unique on major, minor pairs) -
A
PerformanceWarning
will be raised if you are attempting to storetypes that will be pickled by PyTables (rather than stored as
endemic types). See
for more information and some solutions.
Feather¶
New in version 0.20.0.
Feather provides binary columnar serialization for data frames. It is
designed to make reading and writing data frames efficient, and to make
sharing data across data analysis languages easy.
Feather is designed to faithfully serialize and de-serialize DataFrames,
supporting all of the pandas dtypes, including extension dtypes such as
categorical and datetime with tz.
Several caveats.
- This is a newer library, and the format, though stable, is not
guaranteed to be backward compatible to the earlier versions.
-
The format will NOT write an
Index
, orMultiIndex
for theDataFrame
and will raise an error if a non-default one is
provided. You can.reset_index()
to store the index or
.reset_index(drop=True)
to ignore it. - Duplicate column names and non-string columns names are not
supported
-
Non supported types include
Period
and actual Python object types.These will raise a helpful error message on an attempt at
serialization.
See the
Full Documentation.
In[510]: df = pd.DataFrame({'a': list('abc'),
.....: 'b': list(range(1, 4)),
.....: 'c': np.arange(3, 6).astype('u1'),
.....: 'd': np.arange(4.0, 7.0, dtype='float64'),
.....: 'e': [True, False, True],
.....: 'f': pd.Categorical(list('abc')),
.....: 'g': pd.date_range('20130101', periods=3),
.....: 'h': pd.date_range('20130101', periods=3, tz='US/Eastern'),
.....: 'i': pd.date_range('20130101', periods=3, freq='ns')})
.....:
In[511]: df
Out[511]:
a b c d e f g h i
0 a 1 3 4.0 True a 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00.000000000
1 b 2 4 5.0 False b 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-01 00:00:00.000000001
2 c 3 5 6.0 True c 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-01 00:00:00.000000002
In[512]: df.dtypes
Out[512]:
a object
b int64
c uint8
d float64
e bool
f category
g datetime64[ns]
h datetime64[ns, US/Eastern]
i datetime64[ns]
dtype: object
Write to a feather file.
In[513]: df.to_feather('example.feather')
Read from a feather file.
In[514]: result = pd.read_feather('example.feather')
In[515]: result
Out[515]:
a b c d e f g h i
0 a 1 3 4.0 True a 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00.000000000
1 b 2 4 5.0 False b 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-01 00:00:00.000000001
2 c 3 5 6.0 True c 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-01 00:00:00.000000002
# we preserve dtypes
In[516]: result.dtypes
Out[516]:
a object
b int64
c uint8
d float64
e bool
f category
g datetime64[ns]
h datetime64[ns, US/Eastern]
i datetime64[ns]
dtype: object
Parquet¶
New in version 0.21.0.
provides a partitioned binary columnar serialization for data frames. It
is designed to make reading and writing data frames efficient, and to
make sharing data across data analysis languages easy. Parquet can use a
variety of compression techniques to shrink the file size as much as
possible while still maintaining good read performance.
Parquet is designed to faithfully serialize and de-serialize DataFrame
s, supporting all of the pandas dtypes, including extension dtypes such
as datetime with tz.
Several caveats.
- Duplicate column names and non-string columns names are not
supported.
- Index level names, if specified, must be strings.
- Categorical dtypes can be serialized to parquet, but will
de-serialize as
object
dtype. -
Non supported types include
Period
and actual Python object types.These will raise a helpful error message on an attempt at
serialization.
You can specify an engine
to direct the serialization. This can be one
of pyarrow
, or fastparquet
, or auto
. If the engine is NOT
specified, then the pd.options.io.parquet.engine
option is checked; if
this is also auto
, then pyarrow
is tried, and falling back to
fastparquet
.
See the documentation for
and
fastparquet.
Note
These engines are very similar and should read/write nearly identical
parquet format files. Currently pyarrow
does not support timedelta
data, fastparquet>=0.1.4
supports timezone aware datetimes. These
libraries differ by having different underlying dependencies
(fastparquet
by using numba
, while pyarrow
uses a c-library).
In[517]: df = pd.DataFrame({'a': list('abc'),
.....: 'b': list(range(1, 4)),
.....: 'c': np.arange(3, 6).astype('u1'),
.....: 'd': np.arange(4.0, 7.0, dtype='float64'),
.....: 'e': [True, False, True],
.....: 'f': pd.date_range('20130101', periods=3),
.....: 'g': pd.date_range('20130101', periods=3, tz='US/Eastern')})
.....:
In[518]: df
Out[518]:
a b c d e f g
0 a 1 3 4.0 True 2013-01-01 2013-01-01 00:00:00-05:00
1 b 2 4 5.0 False 2013-01-02 2013-01-02 00:00:00-05:00
2 c 3 5 6.0 True 2013-01-03 2013-01-03 00:00:00-05:00
In[519]: df.dtypes
Out[519]:
a object
b int64
c uint8
d float64
e bool
f datetime64[ns]
g datetime64[ns, US/Eastern]
dtype: object
Write to a parquet file.
In[520]: df.to_parquet('example_pa.parquet', engine='pyarrow')
In[521]: df.to_parquet('example_fp.parquet', engine='fastparquet')
Read from a parquet file.
In[522]: result = pd.read_parquet('example_fp.parquet', engine='fastparquet')
In[523]: result = pd.read_parquet('example_pa.parquet', engine='pyarrow')
In[524]: result.dtypes
Out[524]:
a object
b int64
c uint8
d float64
e bool
f datetime64[ns]
g datetime64[ns, US/Eastern]
dtype: object
Read only certain columns of a parquet file.
In[525]: result = pd.read_parquet('example_fp.parquet',
.....: engine='fastparquet', columns=['a', 'b'])
.....:
In[526]: result.dtypes
Out[526]:
a object
b int64
dtype: object
SQL Queries¶
The pandas.io.sql
module provides a collection of query wrappers to
both facilitate data retrieval and to reduce dependency on DB-specific
API. Database abstraction is provided by SQLAlchemy if installed. In
addition you will need a driver library for your database. Examples of
such drivers are
for PostgreSQL or
for MySQL. For
this is included in Python’s standard library by default. You can find
an overview of supported drivers for each SQL dialect in the
SQLAlchemy docs.
If SQLAlchemy is not installed, a fallback is only provided for sqlite
(and for mysql for backwards compatibility, but this is deprecated and
will be removed in a future version). This mode requires a Python
database adapter which respect the
Python DB-API.
See also some
for some advanced strategies.
The key functions are:
read_sql_table (table_name, con[, schema, …]) |
Read SQL database table into a DataFrame. |
read_sql_query (sql, con[, index_col, …]) |
Read SQL query into a DataFrame. |
read_sql (sql, con[, index_col, …]) |
Read SQL query or database table into a DataFrame. |
DataFrame.to_sql (name, con[, schema, …]) |
Write records stored in a DataFrame to a SQL database. |
Note
The function
is a convenience wrapper around
and
(and for backward compatibility) and will delegate to specific function
depending on the provided input (database table name or sql query).
Table names do not need to be quoted if they have special characters.
In the following example, we use the
SQL database engine. You can use a temporary SQLite database where data
are stored in “memory”.
To connect with SQLAlchemy you use the create_engine()
function to
create an engine object from database URI. You only need to create the
engine once per database you are connecting to. For more information on
create_engine()
and the URI formatting, see the examples below and the
SQLAlchemy
In[527]: from sqlalchemy import create_engine
# Create your engine.
In[528]: engine = create_engine('sqlite:///:memory:')
If you want to manage your own connections you can pass one of those
instead:
with engine.connect() as conn, conn.begin():
data = pd.read_sql_table('data', conn)
Writing DataFrames¶
Assuming the following data is in a DataFrame
data
, we can insert it
into the database using
to_sql()
.
id | Date | Col_1 | Col_2 | Col_3 |
---|---|---|---|---|
26 | 2012-10-18 | X | 25.7 | True |
42 | 2012-10-19 | Y | -12.4 | False |
63 | 2012-10-20 | Z | 5.73 | True |
In[529]: data.to_sql('data', engine)
With some databases, writing large DataFrames can result in errors due
to packet size limitations being exceeded. This can be avoided by
setting the chunksize
parameter when calling to_sql
. For example,
the following writes data
to the database in batches of 1000 rows at a
time:
In[530]: data.to_sql('data_chunked', engine, chunksize=1000)
will try to map your data to an appropriate SQL data type based on the
dtype of the data. When you have columns of dtype object
, pandas will
try to infer the data type.
You can always override the default type by specifying the desired SQL
type of any of the columns by using the dtype
argument. This argument
needs a dictionary mapping column names to SQLAlchemy types (or strings
for the sqlite3 fallback mode). For example, specifying to use the
sqlalchemy String
type instead of the default Text
type for string
columns:
In[531]: from sqlalchemy.types import String
In[532]: data.to_sql('data_dtype', engine, dtype={'Col_1': String})
Note
Due to the limited support for timedelta’s in the different database
flavors, columns with type timedelta64
will be written as integer
values as nanoseconds to the database and a warning will be raised.
Note
Columns of category
dtype will be converted to the dense
representation as you would get with np.asarray(categorical)
(e.g. for
string categories this gives an array of strings). Because of this,
reading the database table back in does not generate a categorical.
Reading Tables¶
will read a database table given the table name and optionally a subset
of columns to read.
Note
In order to use
read_sql_table()
,
you must have the SQLAlchemy optional dependency installed.
In[533]: pd.read_sql_table('data', engine)
Out[533]:
index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 X 27.50 True
1 1 42 2010-10-19 Y -12.50 False
2 2 63 2010-10-20 Z 5.73 True
You can also specify the name of the column as the DataFrame
index,
and specify a subset of columns to be read.
In[534]: pd.read_sql_table('data', engine, index_col='id')
Out[534]:
index Date Col_1 Col_2 Col_3
id
26 0 2010-10-18 X 27.50 True
42 1 2010-10-19 Y -12.50 False
63 2 2010-10-20 Z 5.73 True
In[535]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2'])
Out[535]:
Col_1 Col_2
0 X 27.50
1 Y -12.50
2 Z 5.73
And you can explicitly force columns to be parsed as dates:
In[536]: pd.read_sql_table('data', engine, parse_dates=['Date'])
Out[536]:
index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 X 27.50 True
1 1 42 2010-10-19 Y -12.50 False
2 2 63 2010-10-20 Z 5.73 True
If needed you can explicitly specify a format string, or a dict of
arguments to pass to
pandas.to_datetime()
:
pd.read_sql_table('data', engine, parse_dates={'Date': '%Y-%m-%d'})
pd.read_sql_table('data', engine, parse_dates={'Date': {'format': '%Y-%m-%d %H:%M:%S'}})
You can check if a table exists using has_table()
Schema support¶
Reading from and writing to different schema’s is supported through the
schema
keyword in the
and
functions. Note however that this depends on the database flavor (sqlite
does not have schema’s). For example:
df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')
Querying¶
You can query using raw SQL in the
function. In this case you must use the SQL variant appropriate for your
database. When using SQLAlchemy, you can also pass SQLAlchemy Expression
language constructs, which are database-agnostic.
In[537]: pd.read_sql_query('SELECT * FROM data', engine)
Out[537]:
index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 00:00:00.000000 X 27.50 1
1 1 42 2010-10-19 00:00:00.000000 Y -12.50 0
2 2 63 2010-10-20 00:00:00.000000 Z 5.73 1
Of course, you can specify a more “complex” query.
In[538]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;", engine)
Out[538]:
id Col_1 Col_2
0 42 Y -12.5
The
function supports a chunksize
argument. Specifying this will return an
iterator through chunks of the query result:
In[539]: df = pd.DataFrame(np.random.randn(20, 3), columns=list('abc'))
In[540]: df.to_sql('data_chunks', engine, index=False)
In[541]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks", engine, chunksize=5):
.....: print(chunk)
.....:
a b c
0 0.280665 -0.073113 1.160339
1 0.369493 1.904659 1.111057
2 0.659050 -1.627438 0.602319
3 0.420282 0.810952 1.044442
4 -0.400878 0.824006 -0.562305
a b c
0 1.954878 -1.331952 -1.760689
1 -1.650721 -0.890556 -1.119115
2 1.956079 -0.326499 -1.342676
3 1.114383 -0.586524 -1.236853
4 0.875839 0.623362 -0.434957
a b c
0 1.407540 0.129102 1.616950
1 0.502741 1.558806 0.109403
2 -1.219744 2.449369 -0.545774
3 -0.198838 -0.700399 -0.203394
4 0.242669 0.201830 0.661020
a b c
0 1.792158 -0.120465 -1.233121
1 -1.182318 -0.665755 -1.674196
2 0.825030 -0.498214 -0.310985
3 -0.001891 -1.396620 -0.861316
4 0.674712 0.618539 -0.443172
You can also run a plain query without creating a DataFrame
with
execute()
. This is useful for queries that don’t return values, such
as INSERT. This is functionally equivalent to calling execute
on the
SQLAlchemy engine or db connection object. Again, you must use the SQL
syntax variant appropriate for your database.
from pandas.io import sql
sql.execute('SELECT * FROM table_name', engine)
sql.execute('INSERT INTO table_name VALUES(?, ?, ?)', engine,
params=[('id', 1, 12.2, True)])
Engine connection examples¶
To connect with SQLAlchemy you use the create_engine()
function to
create an engine object from database URI. You only need to create the
engine once per database you are connecting to.
from sqlalchemy import create_engine
engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')
engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')
engine = create_engine('oracle://scott:[email protected]:1521/sidname')
engine = create_engine('mssql+pyodbc://mydsn')
# sqlite://<nohostname>/<path>
# where <path> is relative:
engine = create_engine('sqlite:///foo.db')
# or absolute, starting with a slash:
engine = create_engine('sqlite:////absolute/path/to/foo.db')
For more information see the examples the SQLAlchemy
Advanced SQLAlchemy queries¶
You can use SQLAlchemy constructs to describe your query.
Use sqlalchemy.text()
to specify query parameters in a backend-neutral
way
In[542]: import sqlalchemy as sa
In[543]: pd.read_sql(sa.text('SELECT * FROM data where Col_1=:col1'),
.....: engine, params={'col1': 'X'})
.....:
Out[543]:
index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 00:00:00.000000 X 27.5 1
If you have an SQLAlchemy description of your database you can express
where conditions using SQLAlchemy expressions
In[544]: metadata = sa.MetaData()
In[545]: data_table = sa.Table('data', metadata,
.....: sa.Column('index', sa.Integer),
.....: sa.Column('Date', sa.DateTime),
.....: sa.Column('Col_1', sa.String),
.....: sa.Column('Col_2', sa.Float),
.....: sa.Column('Col_3', sa.Boolean),
.....: )
.....:
In[546]: pd.read_sql(sa.select([data_table]).where(data_table.c.Col_3 == True), engine)
Out[546]:
index Date Col_1 Col_2 Col_3
0 0 2010-10-18 X 27.50 True
1 2 2010-10-20 Z 5.73 True
You can combine SQLAlchemy expressions with parameters passed to
using sqlalchemy.bindparam()
In[547]: import datetime as dt
In[548]: expr = sa.select([data_table]).where(data_table.c.Date > sa.bindparam('date'))
In[549]: pd.read_sql(expr, engine, params={'date': dt.datetime(2010, 10, 18)})
Out[549]:
index Date Col_1 Col_2 Col_3
0 1 2010-10-19 Y -12.50 False
1 2 2010-10-20 Z 5.73 True
Sqlite fallback¶
The use of sqlite is supported without using SQLAlchemy. This mode
requires a Python database adapter which respect the
Python DB-API.
You can create connections like so:
import sqlite3
con = sqlite3.connect(':memory:')
And then issue the following queries:
data.to_sql('data', cnx)
pd.read_sql_query("SELECT * FROM data", con)
Google BigQuery¶
Warning
Starting in 0.20.0, pandas has split off Google BigQuery support into
the separate package pandas-gbq
. You can pip install pandas-gbq
to
get it.
The pandas-gbq
package provides functionality to read/write from
Google BigQuery.
pandas integrates with this external package. if pandas-gbq
is
installed, you can use the pandas methods pd.read_gbq
and
DataFrame.to_gbq
, which will call the respective functions from
pandas-gbq
.
Full documentation can be found
here.
Stata Format¶
Writing to Stata format¶
The method to_stata()
will write a DataFrame into a .dta file. The
format version of this file is always 115 (Stata 12).
In[550]: df = pd.DataFrame(randn(10, 2), columns=list('AB'))
In[551]: df.to_stata('stata.dta')
Stata data files have limited data type support; only strings with 244
or fewer characters, int8
, int16
, int32
, float32
and float64
can be stored in .dta
files. Additionally, Stata reserves certain
values to represent missing data. Exporting a non-missing value that is
outside of the permitted range in Stata for a particular data type will
retype the variable to the next larger size. For example, int8
values
are restricted to lie between -127 and 100 in Stata, and so variables
with values above 100 will trigger a conversion to int16
. nan
values
in floating points data types are stored as the basic missing data type
(.
in Stata).
Note
It is not possible to export missing data values for integer data types.
The Stata writer gracefully handles other data types including
int64
, bool
, uint8
, uint16
, uint32
by casting to the smallest
supported type that can represent the data. For example, data with a
type of uint8
will be cast to int8
if all values are less than 100
(the upper bound for non-missing int8
data in Stata), or, if values
are outside of this range, the variable is cast to int16
.
Warning
Conversion from int64
to float64
may result in a loss of precision
if int64
values are larger than 2**53.
Warning
StataWriter
and to_stata()
only support fixed width strings
containing up to 244 characters, a limitation imposed by the version 115
dta file format. Attempting to write Stata dta files with strings
longer than 244 characters raises a ValueError
.
Reading from Stata format¶
The top-level function read_stata
will read a dta file and return
either a DataFrame
or a StataReader
that can be used to read the
file incrementally.
In[552]: pd.read_stata('stata.dta')
Out[552]:
index A B
0 0 1.810535 -1.305727
1 1 -0.344987 -0.230840
2 2 -2.793085 1.937529
3 3 0.366332 -1.044589
4 4 2.051173 0.585662
5 5 0.429526 -0.606998
6 6 0.106223 -1.525680
7 7 0.795026 -0.374438
8 8 0.134048 1.202055
9 9 0.284748 0.262467
Specifying a chunksize
yields a StataReader
instance that can be
used to read chunksize
lines from the file at a time. The
StataReader
object can be used as an iterator.
In[553]: reader = pd.read_stata('stata.dta', chunksize=3)
In[554]: for df in reader:
.....: print(df.shape)
.....:
(3, 3)
(3, 3)
(3, 3)
(1, 3)
For more fine-grained control, use iterator=True
and specify
chunksize
with each call to read()
.
In[555]: reader = pd.read_stata('stata.dta', iterator=True)
In[556]: chunk1 = reader.read(5)
In[557]: chunk2 = reader.read(5)
Currently the index
is retrieved as a column.
The parameter convert_categoricals
indicates whether value labels
should be read and used to create a Categorical
variable from them.
Value labels can also be retrieved by the function value_labels
, which
requires read()
to be called before use.
The parameter convert_missing
indicates whether missing value
representations in Stata should be preserved. If False
(the default),
missing values are represented as np.nan
. If True
, missing values
are represented using StataMissingValue
objects, and columns
containing missing values will have object
data type.
Note
and StataReader
support .dta formats 113-115 (Stata 10-12), 117 (Stata
13), and 118 (Stata 14).
Note
Setting preserve_dtypes=False
will upcast to the standard pandas data
types: int64
for all integer types and float64
for floating point
data. By default, the Stata data types are preserved when importing.
Categorical Data¶
Categorical
data can be exported to Stata data files as value
labeled data. The exported data consists of the underlying category
codes as integer data values and the categories as value labels. Stata
does not have an explicit equivalent to a Categorical
and information
about whether the variable is ordered is lost when exporting.
Warning
Stata only supports string value labels, and so str
is called on the
categories when exporting data. Exporting Categorical
variables with
non-string categories produces a warning, and can result a loss of
information if the str
representations of the categories are not
unique.
Labeled data can similarly be imported from Stata data files as
Categorical
variables using the keyword argument
convert_categoricals
(True
by default). The keyword argument
order_categoricals
(True
by default) determines whether imported
Categorical
variables are ordered.
Note
When importing categorical data, the values of the variables in the
Stata data file are not preserved since Categorical
variables always
use integer data types between -1
and n-1
where n
is the number of
categories. If the original values in the Stata data file are
required, these can be imported by setting convert_categoricals=False
,
which will import original data (but not the variable labels). The
original values can be matched to the imported categorical data since
there is a simple mapping between the original Stata data values and
the category codes of imported Categorical variables: missing values are
assigned code -1
, and the smallest original value is assigned 0
, the
second smallest is assigned 1
and so on until the largest original
value is assigned the code n-1
.
Note
Stata supports partially labeled series. These series have value
labels for some but not all data values. Importing a partially labeled
series will produce a Categorical
with string categories for the
values that are labeled and numeric categories for values with no label.
SAS Formats¶
The top-level function
can read (but not write) SAS xport (.XPT) and (since v0.18.0) SAS7BDAT
(.sas7bdat) format files.
SAS files only contain two value types: ASCII text and floating point
values (usually 8 bytes but sometimes truncated). For xport files, there
is no automatic type conversion to integers, dates, or categoricals. For
SAS7BDAT files, the format codes may allow date variables to be
automatically converted to dates. By default the whole file is read and
returned as a DataFrame
.
Specify a chunksize
or use iterator=True
to obtain reader objects
(XportReader
or SAS7BDATReader
) for incrementally reading the file.
The reader objects also have attributes that contain additional
information about the file and its variables.
Read a SAS7BDAT file:
df = pd.read_sas('sas_data.sas7bdat')
Obtain an iterator and read an XPORT file 100,000 lines at a time:
rdr = pd.read_sas('sas_xport.xpt', chunk=100000)
for chunk in rdr:
do_something(chunk)
The
for the xport file format is available from the SAS web site.
No official documentation is available for the SAS7BDAT format.
Other file formats¶
pandas itself only supports IO with a limited set of file formats that
map cleanly to its tabular data model. For reading and writing other
file formats into and from pandas, we recommend these packages from the
broader community.
netCDF¶
provides data structures inspired by the pandas DataFrame
for working
with multi-dimensional datasets, with a focus on the netCDF file format
and easy conversion to and from pandas.
Performance Considerations¶
This is an informal comparison of various IO methods, using pandas
0.20.3. Timings are machine dependent and small differences should be
ignored.
In[1]: sz = 1000000
In[2]: df = pd.DataFrame({'A': randn(sz), 'B': [1] * sz})
In[3]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 2 columns):
A 1000000 non-null float64
B 1000000 non-null int64
dtypes: float64(1), int64(1)
memory usage: 15.3 MB
When writing, the top-three functions in terms of speed are are
test_pickle_write
, test_feather_write
and
test_hdf_fixed_write_compress
.
In[14]: %timeit test_sql_write(df)
2.37 s ± 36.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In[15]: %timeit test_hdf_fixed_write(df)
194 ms ± 65.9 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In[26]: %timeit test_hdf_fixed_write_compress(df)
119 ms ± 2.15 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In[16]: %timeit test_hdf_table_write(df)
623 ms ± 125 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In[27]: %timeit test_hdf_table_write_compress(df)
563 ms ± 23.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In[17]: %timeit test_csv_write(df)
3.13 s ± 49.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In[30]: %timeit test_feather_write(df)
103 ms ± 5.88 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In[31]: %timeit test_pickle_write(df)
109 ms ± 3.72 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In[32]: %timeit test_pickle_write_compress(df)
3.33 s ± 55.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
When reading, the top three are test_feather_read
, test_pickle_read
and test_hdf_fixed_read
.
In[18]: %timeit test_sql_read()
1.35 s ± 14.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In[19]: %timeit test_hdf_fixed_read()
14.3 ms ± 438 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In[28]: %timeit test_hdf_fixed_read_compress()
23.5 ms ± 672 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In[20]: %timeit test_hdf_table_read()
35.4 ms ± 314 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In[29]: %timeit test_hdf_table_read_compress()
42.6 ms ± 2.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In[22]: %timeit test_csv_read()
516 ms ± 27.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In[33]: %timeit test_feather_read()
4.06 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In[34]: %timeit test_pickle_read()
6.5 ms ± 172 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In[35]: %timeit test_pickle_read_compress()
588 ms ± 3.57 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Space on disk (in bytes)
34816000 Aug 21 18:00 test.sql
24009240 Aug 21 18:00 test_fixed.hdf
7919610 Aug 21 18:00 test_fixed_compress.hdf
24458892 Aug 21 18:00 test_table.hdf
8657116 Aug 21 18:00 test_table_compress.hdf
28520770 Aug 21 18:00 test.csv
16000248 Aug 21 18:00 test.feather
16000848 Aug 21 18:00 test.pkl
7554108 Aug 21 18:00 test.pkl.compress
And here’s the code:
import os
import pandas as pd
import sqlite3
from numpy.random import randn
from pandas.io import sql
sz = 1000000
df = pd.DataFrame({'A': randn(sz), 'B': [1] * sz})
def test_sql_write(df):
if os.path.exists('test.sql'):
os.remove('test.sql')
sql_db = sqlite3.connect('test.sql')
df.to_sql(name='test_table', con=sql_db)
sql_db.close()
def test_sql_read():
sql_db = sqlite3.connect('test.sql')
pd.read_sql_query("select * from test_table", sql_db)
sql_db.close()
def test_hdf_fixed_write(df):
df.to_hdf('test_fixed.hdf', 'test', mode='w')
def test_hdf_fixed_read():
pd.read_hdf('test_fixed.hdf', 'test')
def test_hdf_fixed_write_compress(df):
df.to_hdf('test_fixed_compress.hdf', 'test', mode='w', complib='blosc')
def test_hdf_fixed_read_compress():
pd.read_hdf('test_fixed_compress.hdf', 'test')
def test_hdf_table_write(df):
df.to_hdf('test_table.hdf', 'test', mode='w', format='table')
def test_hdf_table_read():
pd.read_hdf('test_table.hdf', 'test')
def test_hdf_table_write_compress(df):
df.to_hdf('test_table_compress.hdf', 'test', mode='w', complib='blosc', format='table')
def test_hdf_table_read_compress():
pd.read_hdf('test_table_compress.hdf', 'test')
def test_csv_write(df):
df.to_csv('test.csv', mode='w')
def test_csv_read():
pd.read_csv('test.csv', index_col=0)
def test_feather_write(df):
df.to_feather('test.feather')
def test_feather_read():
pd.read_feather('test.feather')
def test_pickle_write(df):
df.to_pickle('test.pkl')
def test_pickle_read():
pd.read_pickle('test.pkl')
def test_pickle_write_compress(df):
df.to_pickle('test.pkl.compress', compression='xz')
def test_pickle_read_compress():
pd.read_pickle('test.pkl.compress', compression='xz')